## Solutions to Homework \# 1

## Math 381, Rice University, Fall 2003

Hildebrand, Ch. 8, \# 1:
Part (a). We compute

$$
\begin{aligned}
& \frac{\partial z}{\partial x}=f(x+y)+(x-y) f^{\prime}(x+y) \\
& \frac{\partial z}{\partial y}=-f(x+y)+(x-y) f^{\prime}(x+y)
\end{aligned}
$$

Subtracting, we eliminate $f^{\prime}$...

$$
\frac{\partial z}{\partial x}-\frac{\partial z}{\partial y}=2 f(x+y) .
$$

Substitute in from the original expression to get

$$
(x-y)\left(\frac{\partial z}{\partial x}-\frac{\partial z}{\partial y}\right)-2 z=0
$$

Part (b). We make a convenient change of variables:

$$
u=a x+b y, \quad v=c x+d y
$$

In these variables, our expression is $z=f(u)+g(y)$ which has accompanying PDE

$$
\frac{\partial^{2} z}{\partial u \partial v}=0 .
$$

We need to translate this back to $x, y$-coordinates! Note that if $\varepsilon=(a d-b c)$, we have

$$
x=\varepsilon^{-1}(d u-b v), \quad y=\varepsilon^{-1}(-c u+a v) .
$$

(This should look familiar if you have studied $2 \times 2$ matrices and their inverses.) This allows us to compute that (hang on, it's not that bad)

$$
\begin{aligned}
0=\frac{\partial^{2} z}{\partial u \partial v} & =\frac{\partial}{\partial u}\left(\frac{\partial z}{\partial v}\right)=\frac{\partial}{\partial u}\left(\frac{\partial z}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial v}\right) \\
& =\frac{\partial}{\partial u}\left(\frac{\partial z}{\partial x}\left(-\varepsilon^{-1} b\right)+\frac{\partial z}{\partial y}\left(\varepsilon^{-1} a\right)\right) \\
& =-b \varepsilon^{-1}\left(\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial x}\right) \frac{\partial x}{\partial u}+\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial x}\right) \frac{\partial y}{\partial u}\right)+a \varepsilon^{-1}\left(\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial y}\right) \frac{\partial x}{\partial u}+\frac{\partial}{\partial y}\left(\frac{\partial z}{\partial y}\right) \frac{\partial y}{\partial u}\right) \\
& =-b d \varepsilon^{-2} \frac{\partial^{2} z}{\partial x^{2}}+(a d+b c) \varepsilon^{-2} \frac{\partial^{2} z}{\partial x \partial y}-a c \varepsilon^{-2} \frac{\partial^{2} z}{\partial y^{2}}
\end{aligned}
$$

Now clearing some common factors we get

$$
b d \frac{\partial^{2} z}{\partial x^{2}}-(a d+b c) \frac{\partial^{2} z}{\partial x \partial y}+a c \frac{\partial^{2} z}{\partial y^{2}}=0 .
$$

Part (c). Here we use a change of variables:

$$
u=a x+b y, \quad v=x
$$

and proceed as above. Our expression looks like

$$
z=f(u)+v g(u)
$$

So, we differentiate to find

$$
\begin{aligned}
\frac{\partial z}{\partial u} & =f^{\prime}(u)+v g^{\prime}(u) \\
\frac{\partial z}{\partial v} & =g(u) \\
\frac{\partial^{2} z}{\partial v^{2}} & =0
\end{aligned}
$$

This last equation is our PDE. But we must write it in the $x, y$-coordinates. So by a computation analogous to the part (b), we find that our desired PDE is

$$
b^{2} \frac{\partial^{2} z}{\partial x^{2}}-2 a b \frac{\partial^{2} z}{\partial x \partial y}+a^{2} \frac{\partial^{2} z}{\partial y^{2}}=0 .
$$

Which is what we wanted.
From now on, I will use the notation $z_{x}$ for $\frac{\partial z}{\partial x}$. It saves typing, and matches Hildebrand's notation.

## Hildebrand, Chapter 8, \#2:

Part (a). Differentiating the relation $z=f(\psi)$ with respect to $x$ and $y$, we find

$$
z_{x}=f^{\prime}(\psi) \psi_{x}, \quad z_{y}=f^{\prime}(\psi) \psi_{y}
$$

Which means that

$$
f^{\prime}(\psi)=\frac{1}{\psi_{x}} z_{x}=\frac{1}{\psi_{y}} z_{y}
$$

which implies that

$$
\begin{equation*}
\psi_{y} z_{x}-\psi_{x} z_{y}=0 \tag{1}
\end{equation*}
$$

Part (b). So, again we use the chain rule to compute the derivatives of $z$ with respect to $x$ and $y$ while considering $s$ and $t$ as intermediate functions. We get

$$
\begin{array}{ll}
z_{x}=z_{s} s_{x}+z_{t} t_{x} & =z_{s} s_{x}+z_{t} \psi_{x} \\
z_{y}=z_{s} s_{y}+z_{t} t_{y} & =z_{s} s_{y}+z_{t} \psi_{y}
\end{array}
$$

If we substitute these into 1 , we see

$$
\begin{align*}
0 & =\psi_{y}\left(z_{s} s_{x}+z_{t} \psi_{x}\right)-\psi_{x}\left(z_{s} s_{y}+z_{t} \psi_{y}\right) \\
& =z_{s}\left(\psi_{y} s_{x}-\psi_{x} s_{y}\right) \tag{2}
\end{align*}
$$

Which is what we wanted. To see that the most general solution of the equation given in the problem has the form $s=f(\psi)$, note that the two functions $t=\psi(x, y)$ and $s=s(x, y)$ are independent exactly when $\left(\psi_{y} s_{x}-\psi_{x} s_{y}\right) \neq 0$. Therefore, equation 2 is equivalent to $\frac{\partial z}{\partial s}=0$. The general solution of this differential equation is clearly $z=f(t)=f(\psi)$ where $f$ is an arbitrary function.

## Hildebrand, Chapter 8, \# 3.

If $z=\psi(x, y)$ is a solution of the equation given in the problem, then we see that

$$
P \cdot \psi_{x}+Q \cdot \psi_{y}=0 .
$$

Which translates to

$$
Q=-P \cdot \frac{\psi_{x}}{\psi_{y}}
$$

If we substitute this back into the given PDE , we get the equivalent equation

$$
P \frac{\partial z}{\partial x}-P \frac{\psi_{x}}{\psi_{y}} \frac{\partial z}{\partial y}=0
$$

simplifying, we find

$$
P\left[\psi_{y} \frac{\partial z}{\partial x}-\psi_{x} \frac{\partial z}{\partial y}\right]=0
$$

So as long as the function $P$ is not identically zero, we see that our equation is equivalent to the one considered in problem 2. By the result of problem 2, the most general solution has the form $z=f(\psi)$ where $f$ is an arbitrary function.

## Hildebrand, Chapter 8, \# 4:

We see by differentiating that

$$
\begin{aligned}
& z_{x}=\phi f^{\prime}(\psi) \psi_{x}+\phi_{x} f(\psi), \\
& z_{y}=\phi f^{\prime}(\psi) \psi_{y}+\phi_{y} f(\psi) .
\end{aligned}
$$

We eliminate $f^{\prime}(\psi)$ to get the equation

$$
\psi_{y} \frac{\partial z}{\partial x}-\psi_{x} \frac{\partial z}{\partial y}=\left(\psi_{y} \phi_{x}-\psi_{x} \phi_{y}\right) f(\psi)
$$

Since we can then substitute $f(\psi)=z / \phi$, we are done.

## Hildebrand, Chapter 8, \#5:

Part (a). The characteristic vector field is $V=(a, b, c)$. So we get characteristic ODE

$$
\frac{d x}{a}=\frac{d y}{b}=\frac{d z}{c} .
$$

Of these, we pick $a \cdot d y-b \cdot d x=0$ and $a \cdot d z-c \cdot d x=0$. These have solutions $a y-b x=C_{1}$ and $a z-c x=C_{2}$, respectively. Therefore, we can write our most general solution in the form

$$
a z-c x=C_{2}=f\left(C_{1}\right)=f(a y-b x)
$$

or,

$$
z=\frac{c}{a} x+f(a y-b x)
$$

where $f$ is an arbitrary function of class $C^{1}$.
Part (b). The CVF is $V=(a, b, c z)$. The associated ODE is

$$
\frac{d x}{a}=\frac{d y}{b}=\frac{d z}{c z} .
$$

Again, we solve a pair of these to get $a y-b x=C_{1}$ and $c x-a \ln z=C_{2}$. So our most general solution is

$$
c x-a \ln z=f(a y-b x)
$$

or, equivalently,

$$
z=e^{(c x / a-f(a y-b x))},
$$

where $f$ is an arbitrary $C^{1}$ function.
Part (c). The CVF is $V=(y,-x, 0)$. The associated ODE is

$$
\frac{d x}{y}=\frac{d y}{-x}=\frac{d z}{0}
$$

So we solve these with $z=C_{2}$ and $x^{2}+y^{2}=C_{1}$. The most general solution is then

$$
z=f\left(x^{2}+y^{2}\right)
$$

where $f$ is an arbitrary $C^{1}$ function.
Part (d). The CVF is $V=(1,1,-2 x z)$. The associated ODE is

$$
\frac{d x}{1}=\frac{d y}{1}=\frac{d z}{-2 x z}
$$

We use the equations $d x=d y$ and $d x=\frac{d z}{-2 x z}$. These have solutions $y-x=C_{1}$ and $x^{2}+\ln z=C_{2}$. So, the general solution to our PDE is

$$
z=e^{-x^{2}+f(y-x)},
$$

where $f$ is an arbitrary $C^{1}$ function.
Part (e). The CVF is $V=(x,-y, z)$. The associated ODE is

$$
\frac{d x}{x}=\frac{d y}{-y}=\frac{d z}{z}
$$

We solve the equation $\frac{d x}{x}=\frac{d y}{-y}$ with $\ln (x y)=C_{1}$ and the equation $\frac{d x}{x}=\frac{d z}{z}$ with $\ln (z / x)=C_{2}$. We then get that the general solution is (after clearing the logarithms)

$$
z=x f(x y)
$$

where $f$ is an arbitrary $C^{1}$ function.
Part (f). The CVF is $V=\left(x^{2}, y^{2}, z^{2}\right)$. The associated ODE is

$$
\frac{d x}{x^{2}}=\frac{d y}{y^{2}}=\frac{d z}{z^{2}}
$$

We can solve a pair of these with the relations $C_{1}=\frac{1}{x}-\frac{1}{y}$ and $C_{2}=\frac{1}{z}-\frac{1}{x}$. Which means that the general solution to our PDE has the form

$$
z=\frac{1}{\frac{1}{x}+f\left(\frac{1}{x}-\frac{1}{y}\right)},
$$

where $f$ is an arbitrary $C^{1}$ function.

## Hildebrand, Chapter 8, \#8:

Part (a). The characteristic vector field is the constant field $V=(1,1,1)$. Therefore, all the characteristic curves are lines with this direction vector. The final claim follows by plugging in the given point.
Part (b). The curve through $\left(0, y_{0}, z_{0}\right)$ is given by $x=y-y_{0}, x=z-z_{0}$. If the initial point is to be chosen on the curve $z=y^{2}, x=0$, then we get equations $y-x=y_{0}, z-x=z_{0}=y_{0}^{2}$, as desired.

To get the equations of the surface which is traced out, note that $z=x+y_{0}^{2}=$ $x+(y-x)^{2}$.
Part (c). The given surface "obviously" contains the curve. As for being an integral surface, we note that

$$
\begin{aligned}
& \frac{\partial z}{\partial x}=1+2(y-x)(-1) \\
& \frac{\partial z}{\partial y}=2(y-x) .
\end{aligned}
$$

Adding these, we get the desired differential equation. Thus, the surface defines a solution to the given equation and is, by definition, an integral surface.
Hildebrand, Chapter 8, \#9:
Part (a). The Characteristic vector field is $V=(1,1,1)$, so the associated

ODE's are $d x=d y=d z$. We get that the characteristic curves are defined by $y-x=C_{1}, z-x=C_{2}$. This leads to the general solution

$$
z-x=C_{2}=f\left(C_{1}\right)=f(y-x)
$$

where $f$ is arbitrary.
Part (b). We must determine the function $f$ which makes our solution consistent with the equations $z=y^{2}$ and $x=0$. Plugging this information into our general form, we find

$$
y^{2}=z=x+f(y-x)=0+f(y+0) .
$$

Therefore, our function must be $f(y)=y^{2}$. In this case, $x=x+(y-x)^{2}$, which is consistent with 8(c).
Hildebrand, Chapter 8, \#10:
Part (a). We know that $z=x+f(y-x)$. Substitute in what we require to get

$$
\phi(x)=z=x+f(2 x-x)=x+f(x) .
$$

So that

$$
f(x)=\phi(x)-x .
$$

We deduce that

$$
z=x+\phi(y-x)-(y-x)=2 x-y+\phi(y-x)
$$

is our solution.
Part (b). Let's proceed by naively checking what the prescribed initial conditions mean. Along the curve $y=x$, we must have

$$
\phi(x)=z=x+f(y-x)=x+f(0)
$$

If we denote the constant $f(0)$ by $k$, we see that we must have $\phi(x)=x+k$. If $\phi$ does not have this form, then no solution is possible as our computation above shows. When $\phi$ is of this form, we can choose any function $f$ for which $f(0)=k$ and specialize our general solution. Since there are infinitely many such functions, we see there are infinitely many solutions meeting this initial condition.

A remark: What has happened here is that the line $y=x$ in the $x y$-plane is the projection of a characteristic curve. So the situation is as we described in class.
Part (c). The characteristic vector field is $V=(1,1,1)$. We found in problem 8 that the characteristic curves for this equation are lines defined by

$$
x-x_{0}=y-y_{0}=z-z_{0} .
$$

These project onto the lines $x-x_{0}=y-y_{0}$ in the $x y$-plane. Rearranging a bit, we see that the projections are $y=x+c$. Generalizing what we did in the last part, we see that to prescribe the value $\phi(x)$ along this line, we must have

$$
\phi(x)=z=x+f(y-x)=x+f(c)
$$

So, setting $k=f(c)$, we see that $\phi$ must be as described in the problem. Again, if $\phi$ meets this requirement, we can take an infinite number of different functions $f$ (namely those with $f(c)=k$ ) as satisfying the initial condition $\phi$ along the curve $y=x+c$. Also, if $\phi$ does not meet this requirement, then there can be no solution.
Hildebrand, Chapter 8, \# 11: Our equation is $z_{x}-z_{y}=0$, so the characteristic vector field is $V=(1,-1,0)$. The characteristic ODE's

$$
d x=-d y=\frac{d z}{0}
$$

So we take the equations $d z=0$ and $d y=-d x$. We solve these with $z=C_{1}$ and $y=-x+C_{2}$, respectively. Our general solution is thus

$$
z=C_{1}=f\left(C_{2}\right)=f(y+x)
$$

Now, to find our particular solution, we substitute in what we know (in terms of $t$ ).

$$
\begin{aligned}
(t+1)^{4} & =z=f(x+y) \\
& =f\left(t^{2}+1+2 t\right) \\
& =f\left((t+1)^{2}\right)
\end{aligned}
$$

Hence, $f(a)=a^{2}$. Therefore, our solution is

$$
z=(x+y)^{2}
$$

Hildebrand, Chapter 8, \# 12: Part (a). Our general solution is

$$
z=\frac{c}{b} y+f(a y-b x)
$$

We insert our desired initial data to find

$$
x=\frac{c}{b} x+f(a x-b x) .
$$

Using the substitution $t=(a-b) x$, we see

$$
f(t)=\frac{t}{a-b}\left(1-\frac{c}{b}\right)
$$

as long as $a-b \neq 0$. In this case, we get

$$
z=\frac{c}{b} y+\frac{a y-b x}{a-b}\left(1-\frac{c}{b}\right) .
$$

Now in the case when $a=b$, we instead find that $x=\frac{c}{b} x-f(0)$ is required. This is only possible when $c=b$ and $f(0)=0$. If $c \neq b$, there is no particular solution meeting our prescription of initial condition. If $c=b$, then there are
infinitely many solutions meeting our prescription: one can choose any differentiable function $f$ with $f(0)=0$.
Part(b). The general solution we found was

$$
z=e^{(c x / a+f(a y-b x))} .
$$

Applying the same procedure as before, we see that

$$
f((a-b) x)=\ln (x)-\left(\frac{c}{a} x\right)
$$

Substituting $t=(a-b) x$, we get

$$
f(t)=\ln \left(\frac{t}{a-b}\right)-\left(\frac{c}{a} \cdot \frac{t}{a-b}\right) .
$$

Which means that our solution is

$$
\begin{aligned}
z & =e^{(c x / a)+\ln \left(\frac{a y-b x}{a-b}\right)-\left(\frac{c}{a} \frac{a y-b x}{a-b}\right)} . \\
& =\frac{a y-b x}{a-b} \cdot e^{\left(\frac{c}{a-b}(y-x)\right)} .
\end{aligned}
$$

Again this only works when $a \neq b$. In the case where $a=b$, we obtain the necessary condition $x=$ const $\cdot e^{c x / a}$. But this is impossible, so there is no solution meeting our conditions in this case.
Part (c). The general solution is $z=f\left(x^{2}+y^{2}\right)$. We insert our initial conditions to find that $f$ must satisfy $x=f\left(2 x^{2}\right)$. That is $f(x)=\sqrt{x / 2}$. Thus, the particular solution we are after is

$$
z=\sqrt{\left(x^{2}+y^{2}\right) / 2}
$$

Part (d). The general solution is $z=e^{\left(-x^{2}+f(y-x)\right)}$. We input the initial conditions to find

$$
x=e^{-x^{2}} \cdot e^{f(0)}
$$

Again, as $f(0)$ is a constant, this is impossible. We conclude that there is no solution meeting our initial conditions.
Part (e). The general solution is $z=x f(x y)$. The initial conditions force that $x=x f\left(x^{2}\right)$, which means that $f(x)=1$. So our particular solution is

$$
z=x
$$

Part (f). Our general solution is

$$
z=\frac{1}{\frac{1}{x}+f\left(\frac{1}{x}-\frac{1}{y}\right)} .
$$

When we put in the initial condition $x=y=z$ we find

$$
x=\frac{1}{\frac{1}{x}+f\left(\frac{1}{x}-\frac{1}{x}\right)} .
$$

Rearranging this, we get the equation $f(0)=0$. There are infinitely many solutions, we may use any differentiable function $f$ for which $f(0)=0$.
Hildebrand, Chapter 8, \# 17:
Part (a). The C.V.F. is $V=(x, y, t, 1)$. The associated ODE's are

$$
\frac{d x}{x}=\frac{d y}{y}=\frac{d t}{t}=\frac{d z}{1}
$$

We solve these with the equations $y=C_{1} x, t=C_{2} x$, and $z=C_{3}+\ln x$. So the general solution is found by making $C_{3}$ a function of $C_{1}$ and $C_{2}$ :

$$
z=\ln x+f(y / x, t / x) .
$$

Part (b). The solution in the book is incorrect! To find the desired particular solution, we input all of the known information in a way that removes reference to the variables $z$ and $t$.

$$
\phi(x, y)=z=\ln x+f(y / x, t / x)=\ln x+f\left(y / x,\left(x^{2}+y\right) / x\right)
$$

We now set $u=y / x$ and $v=\left(x^{2}+y\right) / x$. This means that $x=v-u$ and $y=(v-u) u$. Using this substitution, we find

$$
\phi(v-u,(v-u) u)=\ln (v-u)+f(u, v) .
$$

If we use this definition of $f$, we get the particular solution

$$
\begin{aligned}
z & =\ln x+\phi\left(\frac{t}{x}-\frac{y}{x},\left(\frac{t}{x}-\frac{y}{x}\right) \frac{y}{x}\right)-\ln \left(\frac{t}{x}-\frac{y}{x}\right) \\
& =\phi\left(\frac{t-y}{x}, \frac{(t-y) y}{x^{2}}\right)+\ln \left(\frac{x^{2}}{t-y}\right) .
\end{aligned}
$$

