
Solutions to Homework # 1
Math 381, Rice University, Fall 2003

Hildebrand, Ch. 8, # 1:
Part (a). We compute

∂z

∂x
= f(x + y) + (x− y)f ′(x + y)

∂z

∂y
= −f(x + y) + (x− y)f ′(x + y).

Subtracting, we eliminate f ′. . .

∂z

∂x
− ∂z

∂y
= 2f(x + y).

Substitute in from the original expression to get

(x− y)
(

∂z

∂x
− ∂z

∂y

)
− 2z = 0.

Part (b). We make a convenient change of variables:

u = ax + by, v = cx + dy.

In these variables, our expression is z = f(u) + g(y) which has accompanying
PDE

∂2z

∂u∂v
= 0.

We need to translate this back to x, y-coordinates! Note that if ε = (ad − bc),
we have

x = ε−1(du− bv), y = ε−1(−cu + av).

(This should look familiar if you have studied 2x2 matrices and their inverses.)
This allows us to compute that (hang on, it’s not that bad)

0 =
∂2z

∂u∂v
=

∂

∂u
(
∂z

∂v
) =

∂

∂u
(
∂z

∂x

∂x

∂v
+

∂z

∂y

∂y

∂v
)

=
∂

∂u
(
∂z

∂x
(−ε−1b) +

∂z

∂y
(ε−1a))

= −bε−1

(
∂

∂x
(
∂z

∂x
)
∂x

∂u
+

∂

∂y
(
∂z

∂x
)
∂y

∂u

)
+ aε−1

(
∂

∂x
(
∂z

∂y
)
∂x

∂u
+

∂

∂y
(
∂z

∂y
)
∂y

∂u

)

= −bdε−2 ∂2z

∂x2
+ (ad + bc)ε−2 ∂2z

∂x∂y
− acε−2 ∂2z

∂y2

Now clearing some common factors we get

bd
∂2z

∂x2
− (ad + bc)

∂2z

∂x∂y
+ ac

∂2z

∂y2
= 0.
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Part (c). Here we use a change of variables:

u = ax + by, v = x

and proceed as above. Our expression looks like

z = f(u) + vg(u)

So, we differentiate to find

∂z

∂u
= f ′(u) + vg′(u)

∂z

∂v
= g(u)

∂2z

∂v2
= 0

This last equation is our PDE. But we must write it in the x, y-coordinates. So
by a computation analogous to the part (b), we find that our desired PDE is

b2 ∂2z

∂x2
− 2ab

∂2z

∂x∂y
+ a2 ∂2z

∂y2
= 0.

Which is what we wanted.

From now on, I will use the notation zx for
∂z

∂x
. It saves typing, and

matches Hildebrand’s notation.

Hildebrand, Chapter 8, #2:

Part (a). Differentiating the relation z = f(ψ) with respect to x and y, we find

zx = f ′(ψ)ψx, zy = f ′(ψ)ψy

Which means that
f ′(ψ) =

1
ψx

zx =
1
ψy

zy,

which implies that
ψyzx − ψxzy = 0. (1)

Part (b). So, again we use the chain rule to compute the derivatives of z with
respect to x and y while considering s and t as intermediate functions. We get

zx = zssx + zttx = zssx + ztψx,

zy = zssy + ztty = zssy + ztψy.

If we substitute these into 1, we see

0 = ψy (zssx + ztψx)− ψx (zssy + ztψy)
= zs (ψysx − ψxsy) .

(2)
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Which is what we wanted. To see that the most general solution of the equa-
tion given in the problem has the form s = f(ψ), note that the two functions
t = ψ(x, y) and s = s(x, y) are independent exactly when (ψysx − ψxsy) 6= 0.

Therefore, equation 2 is equivalent to
∂z

∂s
= 0. The general solution of this

differential equation is clearly z = f(t) = f(ψ) where f is an arbitrary function.

Hildebrand, Chapter 8, # 3.
If z = ψ(x, y) is a solution of the equation given in the problem, then we see
that

P · ψx + Q · ψy = 0.

Which translates to
Q = −P · ψx

ψy
.

If we substitute this back into the given PDE, we get the equivalent equation

P
∂z

∂x
− P

ψx

ψy

∂z

∂y
= 0,

simplifying, we find

P

[
ψy

∂z

∂x
− ψx

∂z

∂y

]
= 0.

So as long as the function P is not identically zero, we see that our equation
is equivalent to the one considered in problem 2. By the result of problem 2,
the most general solution has the form z = f(ψ) where f is an arbitrary function.

Hildebrand, Chapter 8, # 4:
We see by differentiating that

zx = φf ′(ψ)ψx + φxf(ψ),
zy = φf ′(ψ)ψy + φyf(ψ).

We eliminate f ′(ψ) to get the equation

ψy
∂z

∂x
− ψx

∂z

∂y
= (ψyφx − ψxφy) f(ψ)

Since we can then substitute f(ψ) = z/φ, we are done.
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Hildebrand, Chapter 8, #5:
Part (a). The characteristic vector field is V = (a, b, c). So we get characteristic
ODE

dx

a
=

dy

b
=

dz

c
.

Of these, we pick a · dy− b · dx = 0 and a · dz− c · dx = 0. These have solutions
ay− bx = C1 and az − cx = C2, respectively. Therefore, we can write our most
general solution in the form

az − cx = C2 = f(C1) = f(ay − bx)

or,
z =

c

a
x + f(ay − bx)

where f is an arbitrary function of class C1.
Part (b). The CVF is V = (a, b, cz). The associated ODE is

dx

a
=

dy

b
=

dz

cz
.

Again, we solve a pair of these to get ay− bx = C1 and cx− a ln z = C2. So our
most general solution is

cx− a ln z = f(ay − bx)

or, equivalently,
z = e(cx/a−f(ay−bx)),

where f is an arbitrary C1 function.
Part (c). The CVF is V = (y,−x, 0). The associated ODE is

dx

y
=

dy

−x
=

dz

0

So we solve these with z = C2 and x2 + y2 = C1. The most general solution is
then

z = f(x2 + y2)

where f is an arbitrary C1 function.
Part (d). The CVF is V = (1, 1,−2xz). The associated ODE is

dx

1
=

dy

1
=

dz

−2xz
.

We use the equations dx = dy and dx =
dz

−2xz
. These have solutions y−x = C1

and x2 + ln z = C2. So, the general solution to our PDE is

z = e−x2+f(y−x),
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where f is an arbitrary C1 function.
Part (e). The CVF is V = (x,−y, z). The associated ODE is

dx

x
=

dy

−y
=

dz

z

We solve the equation
dx

x
=

dy

−y
with ln(xy) = C1 and the equation

dx

x
=

dz

z
with ln(z/x) = C2. We then get that the general solution is (after clearing the
logarithms)

z = xf(xy),

where f is an arbitrary C1 function.
Part (f). The CVF is V = (x2, y2, z2). The associated ODE is

dx

x2
=

dy

y2
=

dz

z2

We can solve a pair of these with the relations C1 =
1
x
− 1

y
and C2 =

1
z
− 1

x
.

Which means that the general solution to our PDE has the form

z =
1

1
x

+ f(
1
x
− 1

y
)
,

where f is an arbitrary C1 function.
Hildebrand, Chapter 8, #8:
Part (a). The characteristic vector field is the constant field V = (1, 1, 1).
Therefore, all the characteristic curves are lines with this direction vector. The
final claim follows by plugging in the given point.
Part (b). The curve through (0, y0, z0) is given by x = y− y0, x = z− z0. If the
initial point is to be chosen on the curve z = y2, x = 0, then we get equations
y − x = y0, z − x = z0 = y2

0 , as desired.
To get the equations of the surface which is traced out, note that z = x+y2

0 =
x + (y − x)2.
Part (c). The given surface “obviously” contains the curve. As for being an
integral surface, we note that

∂z

∂x
= 1 + 2(y − x)(−1)

∂z

∂y
= 2(y − x).

Adding these, we get the desired differential equation. Thus, the surface defines
a solution to the given equation and is, by definition, an integral surface.
Hildebrand, Chapter 8, #9:
Part (a). The Characteristic vector field is V = (1, 1, 1), so the associated
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ODE’s are dx = dy = dz. We get that the characteristic curves are defined by
y − x = C1, z − x = C2. This leads to the general solution

z − x = C2 = f(C1) = f(y − x)

where f is arbitrary.
Part (b). We must determine the function f which makes our solution consistent
with the equations z = y2 and x = 0. Plugging this information into our general
form, we find

y2 = z = x + f(y − x) = 0 + f(y + 0).

Therefore, our function must be f(y) = y2. In this case, x = x+(y−x)2, which
is consistent with 8(c).
Hildebrand, Chapter 8, #10:
Part (a). We know that z = x + f(y − x). Substitute in what we require to get

φ(x) = z = x + f(2x− x) = x + f(x).

So that
f(x) = φ(x)− x.

We deduce that

z = x + φ(y − x)− (y − x) = 2x− y + φ(y − x)

is our solution.
Part (b). Let’s proceed by naively checking what the prescribed initial condi-
tions mean. Along the curve y = x, we must have

φ(x) = z = x + f(y − x) = x + f(0)

If we denote the constant f(0) by k, we see that we must have φ(x) = x + k.
If φ does not have this form, then no solution is possible as our computation
above shows. When φ is of this form, we can choose any function f for which
f(0) = k and specialize our general solution. Since there are infinitely many
such functions, we see there are infinitely many solutions meeting this initial
condition.

A remark: What has happened here is that the line y = x in the xy-plane
is the projection of a characteristic curve. So the situation is as we described in
class.
Part (c). The characteristic vector field is V = (1, 1, 1). We found in problem 8
that the characteristic curves for this equation are lines defined by

x− x0 = y − y0 = z − z0.

These project onto the lines x−x0 = y− y0 in the xy-plane. Rearranging a bit,
we see that the projections are y = x + c. Generalizing what we did in the last
part, we see that to prescribe the value φ(x) along this line, we must have

φ(x) = z = x + f(y − x) = x + f(c).
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So, setting k = f(c), we see that φ must be as described in the problem. Again,
if φ meets this requirement, we can take an infinite number of different functions
f (namely those with f(c) = k) as satisfying the initial condition φ along the
curve y = x + c. Also, if φ does not meet this requirement, then there can be
no solution.
Hildebrand, Chapter 8, # 11: Our equation is zx − zy = 0, so the charac-
teristic vector field is V = (1,−1, 0). The characteristic ODE’s

dx = −dy =
dz

0
.

So we take the equations dz = 0 and dy = −dx. We solve these with z = C1

and y = −x + C2, respectively. Our general solution is thus

z = C1 = f(C2) = f(y + x).

Now, to find our particular solution, we substitute in what we know (in
terms of t).

(t + 1)4 = z = f(x + y)

= f(t2 + 1 + 2t)

= f((t + 1)2).

Hence, f(a) = a2. Therefore, our solution is

z = (x + y)2

Hildebrand, Chapter 8, # 12: Part (a). Our general solution is

z =
c

b
y + f(ay − bx)

We insert our desired initial data to find

x =
c

b
x + f(ax− bx).

Using the substitution t = (a− b)x, we see

f(t) =
t

a− b

(
1− c

b

)

as long as a− b 6= 0. In this case, we get

z =
c

b
y +

ay − bx

a− b

(
1− c

b

)
.

Now in the case when a = b, we instead find that x =
c

b
x − f(0) is required.

This is only possible when c = b and f(0) = 0. If c 6= b, there is no particular
solution meeting our prescription of initial condition. If c = b, then there are
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infinitely many solutions meeting our prescription: one can choose any differen-
tiable function f with f(0) = 0.
Part(b). The general solution we found was

z = e(cx/a+f(ay−bx)).

Applying the same procedure as before, we see that

f((a− b)x) = ln(x)−
( c

a
x
)

.

Substituting t = (a− b)x, we get

f(t) = ln
(

t

a− b

)
−

(
c

a
· t

a− b

)
.

Which means that our solution is

z = e(cx/a)+ln( ay−bx
a−b )−( c

a
ay−bx

a−b ).

=
ay − bx

a− b
· e( c

a−b (y−x)).

Again this only works when a 6= b. In the case where a = b, we obtain the
necessary condition x = const · ecx/a. But this is impossible, so there is no
solution meeting our conditions in this case.
Part (c). The general solution is z = f(x2 +y2). We insert our initial conditions
to find that f must satisfy x = f(2x2). That is f(x) =

√
x/2. Thus, the

particular solution we are after is

z =
√

(x2 + y2)/2.

Part (d). The general solution is z = e(−x2+f(y−x)). We input the initial
conditions to find

x = e−x2 · ef(0).

Again, as f(0) is a constant, this is impossible. We conclude that there is no
solution meeting our initial conditions.
Part (e). The general solution is z = xf(xy). The initial conditions force that
x = xf(x2), which means that f(x) = 1. So our particular solution is

z = x.

Part (f). Our general solution is

z =
1

1
x

+ f(
1
x
− 1

y
)
.

When we put in the initial condition x = y = z we find

x =
1

1
x

+ f(
1
x
− 1

x
)
.
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Rearranging this, we get the equation f(0) = 0. There are infinitely many
solutions, we may use any differentiable function f for which f(0) = 0.
Hildebrand, Chapter 8, # 17:
Part (a). The C.V.F. is V = (x, y, t, 1). The associated ODE’s are

dx

x
=

dy

y
=

dt

t
=

dz

1

We solve these with the equations y = C1x, t = C2x, and z = C3 + ln x. So the
general solution is found by making C3 a function of C1 and C2:

z = ln x + f(y/x, t/x).

Part (b). The solution in the book is incorrect! To find the desired particular
solution, we input all of the known information in a way that removes reference
to the variables z and t.

φ(x, y) = z = ln x + f(y/x, t/x) = ln x + f(y/x, (x2 + y)/x).

We now set u = y/x and v = (x2 + y)/x. This means that x = v − u and
y = (v − u)u. Using this substitution, we find

φ(v − u, (v − u)u) = ln(v − u) + f(u, v).

If we use this definition of f , we get the particular solution

z = ln x + φ

(
t

x
− y

x
,

(
t

x
− y

x

)
y

x

)
− ln

(
t

x
− y

x

)

= φ

(
t− y

x
,
(t− y)y

x2

)
+ ln

(
x2

t− y

)
.
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