Homework Assignment \# 2

Due Friday, September 19, 2003.

1. Calculate the coefficients in the Fourier Series for a function $f(x)$ of period 2π which is equal to -1 for $-\pi<x<0$ and equal to 1 for $0<x<\pi$.
2. Calculate the coefficients in the Fourier Series for an even function of period 2π which is equal to x for $0 \leq x \leq \pi / 2$ and equal to $\pi / 2$ for $\pi / 2 \leq x<\pi$.
3. Let $f(x)=\frac{1}{2}(\pi-x)$. Find the Fourier series of the extension of f to an odd function of period 2π.
4. Construct a graph of the first three partial sums of the Fourier series of the functions in problems 1,2 and 3 on the same set of axes as a graph of the original function.
5. Let $s_{n}(x)$ denote the $n^{\text {th }}$ order partial sum of the Fourier series for a function f. Show that

$$
\int_{-\pi}^{\pi} s_{n}(x)^{2} d x=\pi \frac{a_{0}^{2}}{2}+\pi \sum_{k=1}^{n}\left(a_{k}^{2}+b_{k}^{2}\right)
$$

where the a_{k} 's and b_{k} 's are the Fourier coefficients of f.
6. Show that

$$
\int_{-\pi}^{\pi} \frac{\sin \left(\left(n+\frac{1}{2}\right) u\right)}{2 \sin \left(\frac{u}{2}\right)} d u=\pi
$$

(Hint: Recall the original definition of the function $G(v)$ from class.)
7. Let f be a 2π-periodic function for which $f(x)=x$ when $-\pi \leq x<\pi$. By considering the Fourier series of f, write an infinite sum expansion of π in the form

$$
\pi=4 \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{2 k-1}=4\left(1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\ldots\right)
$$

What about the function f prevents us from just evaluating the Fourier series at the point $x=\pi$?
8. By a similar method using the 2π-periodic function for which $g(x)=|x|$ when $-\pi \leq x \leq \pi$, find an infinite sum expansion for π^{2}. (Hint: look at the point $x=0$.) How big of a partial sum must one use to ensure the error in using this series to estimate π is less than 10^{-3} ? (Hint: Look at the proof of Theorem 5.) What about the function f might make the convergence so slow?

Problems 9 and 10 collect facts that we need for the lecture on the Gibbs phenomenon.
9. Let ψ be the function considered in problem 3 . Use the trig identity

$$
\cos (t)+\cdots+\cos (n t)=-\frac{1}{2}+\frac{\sin \left(\left(n+\frac{1}{2}\right) t\right)}{2 \sin \left(\frac{t}{2}\right)}
$$

to show that the $n^{\text {th }}$ partial sum of ψ at $x \in(0,2 \pi)$ is

$$
s_{n}(x)=-\frac{x}{2}+\int_{0}^{x} \frac{\sin \left(\left(n+\frac{1}{2}\right) u\right)}{2 \sin \left(\frac{u}{2}\right)} d u
$$

10. Continuing from 9 , let $R_{n}(x)=\psi(x)-s_{n}(x)$ be the $n^{\text {th }}$ remainder. Show that the derivative of $R_{n}(x)$ is

$$
R_{n}^{\prime}(x)=-\frac{\sin \left(\left(n+\frac{1}{2}\right) x\right)}{2 \sin \left(\frac{x}{2}\right)}
$$

Show that in the interval $(0,2 \pi), R_{n}^{\prime}$ has zeroes exactly at the points

$$
x_{1}=\frac{2 \pi}{2 n+1}, \quad x_{2}=\frac{2 \cdot 2 \pi}{2 n+1}, \ldots, \quad x_{2 n}=\frac{2 n \cdot 2 \pi}{2 n+1} .
$$

Which of these are maxima and which are minima of R_{n} ? Show that at a minimum point $R_{n}\left(x_{i}\right)<0$ and at a maximum point $R_{n}\left(x_{i}\right)>0$. Observe that this means that each of the points x_{i} is a maximum point for the function $\left|R_{n}(x)\right|=\left|\psi(x)-s_{n}(x)\right|$.

