
Solutions to Homework # 3
Math 381, Rice University, Fall 2003

Problem 1: (Hildebrand, Chapter 9 #15) This problem is a lot like the one
we described in lecture on Monday, September 22. The only difference is in the
boundary conditions.

Since the equation is homogeneous, we can simply add the solutions to the
two boundary value problems we get by setting f or g to be exactly zero.

The problem with g(x) = 0 we solved in class with

u1(x, y) =
∞∑

k=1

ck sinh
(

kπ

l
(d− y)

)
sin

(
kπ

l
x

)

If you work the details out for problem with the other boundary conditions (that
is, set f = 0), we get

u2(x, y) =
∞∑

k=1

dk sinh
(

kπ

l
y

)
sin

(
kπ

l
x

)

as a solution. Adding these two, we still get a solution to Laplace’s equation.
It is not to hard to check that the sum then meets the required boundary
conditions. So our formal solution is

u(x, y) =
∞∑

k=1

(
ck sinh

(
kπ

l
(d− y)

)
+ dk sinh

(
kπ

l
y

))
sin

(
kπ

l
x

)
,

where the coefficients ck and dk are chosen so that

ck sinh
(

kπ

l
(d)

)

is the kth coefficient in the Fourier sine series for f(x) and

dk sinh
(

kπ

l
(d)

)

is the kth coefficient in the Fourier sine series for g(x).
To insure that this formal solution is an actual solution, one needs to check

convergence of the series. From the form of the sum, it is sufficient that the
functions f and g are nice enough to have convergent Fourier Series.
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Problem 2: (Hildebrand, Chapter 9 #21) The idea here is that a polynomial
is identically zero only if all its coefficients are zero. So, suppose we have
a polynomial in x and y. As I suggested in email, it is enough to consider
something cubic (that’s enough to do problem 3). So, consider

ϕ = A0 + A1x + A2y + A3x
2 + A4xy + A5y

2 + A6x
3 + A7x

2y + A8xy2 + A9y
3.

We compute the first few derivatives to get

∂2ϕ

∂x2
= 2A3 + 6A6x + 2A7y

∂2ϕ

∂y2
= 2A5 + 2A8x + 6A9y.

So that

0 =4ϕ =
∂2ϕ

∂x2
+

∂2ϕ

∂y2

= (2A3 + 6A6x + 2A7y) + (2A5 + 2A8x + 6A9y)
= 2(A3 + A5) + 2x(3A6 + A8) + 3y(A7 + 3A9).

So, we see that there are no restrictions on A0, A1, A2, A4, and that A5 = −A3,
A8 = −3A6 and A7 = −3A9. This means that ϕ is harmonic when it takes the
form

ϕ = A0 + A1x + A2y + A4xy + A3(x2 − y2) + A6(x3 − 3xy2) + A9(y3 − 3x2y).

Relabelling the constants, we get the desired result

ϕ = a0 + a1x + a2y + a3xy + a4(x2 − y2) + a5(x3 − 3xy2) + a6(y3 − 3x2y).

Problem 3: (Hildebrand, Chapter 9 #22) Following the hint in the text, we
split our problem into two different boundary value problems. Namely, set
T = p(x, y) + u(x, y) where p(x, y) is a polynomial (and hence grows slower
than any exponential). Then we have two problems:
Problem One




4p(x, y) = 0, for 0 ≤ y ≤ ∞ and 0 ≤ x ≤ l,
u(0, y) = α1 + β2y, for all y,
u(l, y) = α2 + β2y, for all y,

u(x, 0) = 0, for all x,
p is a polynomial.

Problem Two



4u(x, y) = 0, for 0 ≤ y ≤ ∞ and 0 ≤ x ≤ l,
u(0, y) = u(l, y) = 0, for all y,

u(x, 0) = f(x)− p(x, 0), for all x,
limy→∞ u(x, y) → 0, for all x
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The sum of the solutions to these problems will give us a solution to the stated
problem. Note that we have adjusted the boundary value for problem two in
terms of what problem one gives us, that is because we can’t set the corre-
sponding boundary condition to zero in our polynomial problem and still get a
(nontrivial) solution.

To solve the first problem, we use the Problem 2. We see that a polynomial
solution to Laplace’s equation has the form

p(x, y) = a0+a1x+a2y+a3xy+a4(x2−y2)+a5(x3−3xy2)+a6(y3−3x2y)+ . . .

To meet the boundary conditions, we see

α1 + β1y = p(0, y) = a0 + a2y − a4y
2 + higher order terms in y . . .

So that a0 = α1 and a2 = β1. All of the other terms which appear here (from
a4 on up) must vanish. This means that we only need to look at

p(x, y) = α1 + a1x + β1y + a3xy.

We have one more initial condition to check, it is

α2 + β2y = p(l, y) = α1 + a1l + β1y + a3ly.

Comparing like terms, we solve for the coefficients a1 = α2−α1
l and a3 = β2−β1

l .
This fixes up the solution to problem one as

p(x, y) = α1 +
α2 − α1

l
x + β1y +

β2 − β1

l
xy

We have already solved problem two. It is the first example from class. The
solution is

u(x, y) =
∞∑

k=1

bke−
kπy

l sin
(

kπx

l

)
,

where the bk’s are the Fourier Sine coefficients of f(x)− p(x, 0) = f(x)− α1 −
(α2−α1)(x/l). Note that this does not grow exponentially, it dies exponentially.

So our final solution is

T (x, y) = α1 +
α2 − α1

l
x + β1y +

β2 − β1

l
xy +

∞∑

k=1

bke−
kπy

l sin
(

kπx

l

)
,

where the bk’s are the Fourier Sine series coefficients of

g(x) = f(x)− α1 − (α2 − α1)(x/l).
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Problem 4: For this problem, we will use the solution to the plucked string
wave equation that we derived in class. We need some nice initial condition, so
we use

f(x) =
{

h
b x, 0 ≤ x ≤ b

h
π−b (π − x) b ≤ x ≤ π.

This describes a string which is pulled above horizontal to a height h over the
point b ∈ (0, π).

The solution we found in class to the plucked string problem requires the
Fourier Sine series coefficients of f . So we compute these to be

bk = . . . =
2h

k2

sin(kb)
b(π − b)

.

Recall our discussion of how the sound only depends on the relative strengths
of those frequencies which appear in this Fourier expansion.

Now we can readily answer questions (a) and (b). First, for (b), changing
how hard you pluck the string corresponds to changing the height h. We see
that a change in h affects all of the Fourier coefficients in the same way, so all
we change is the volume of the sound. The relative strengths of the vibration
in every frequency is affected in the same way, so the note does not change.
But the total energy of the waves changes, so the volume is different. As for
(a), it does matter where you pluck a string. changing the value of b affects
the Fourier coefficients differently depending on the value of k. Therefore, the
relative strengths of the frequencies you hear is changed, and the string will
not sound the same. As an example, if b = π/2 then the second harmonic is
missing but the third is present. But if b = π/3, the third harmonic is missing
but the second is present. Note however that in this case the total energy is
preserved (why is that? look at the geometry of the integral), so the volume is
left unchanged.

To determine the answer to (c), we need to solve the wave equation with a
different set of initial conditions. The resulting solution is

y(x, t) =
∞∑

k=1

ck sin(kx) sin(kat)

where

f(x) = yt(x, 0) =
∞∑

k=1

kack sin(kx).

So that kack is the Fourier Sine series coefficient of f . This means that at the
same frequency, the struck string has energy equal to ck = bk

ka , which is different
from the energy bk of the kth harmonic frequency of the plucked string. So it
matters.

Of course, it is hard to ”strike” a string and give it initial velocities deter-
mined by the function f above. In reality, you still ”pull and release” a string
when you strum it. . . Which is fortunate, because that gives a richer sound.
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