
Solutions to Homework # 4
Math 381, Rice University, Fall 2003

Problem 1: We start by making the Euler substitution t = ln x, or x = et.
Then we compute that

dy

dt
= xy′, and

d2y

dt2
= x2y′′ + xy′.

So we can rewrite our original equation as

d2y

dt2
+ (α− 1)

dy

dt
+ βy = 0. (1)

This is now a constant coefficient, homogeneous, linear second order ODE. The
theory of these equations tells us to consider the characteristic polynomial

λ2 + (α− 1)λ + β = 0 (2)

of this equation, and that the solutions of equation (1) depend on the nature
of the roots to this characteristic polynomial. By the quadratic formula, we get
that the roots are

λ1,2 =
1− α±

√
(α− 1)2 − 4β

2
.

The solutions to (1) fall into three cases depending on the sign of the discrimi-
nant D = (α− 1)2 − 4β.

Case One: D is positive In this case, there are two distinct real roots. The
general solution to (1) is then

y(t) = Aeλ1t + Beλ2t.

Changing variables back to x, we get

y(x) = Axλ1 + Bxλ2 ,

where λ1, λ2 are the roots of (2).

Case Two: D = 0 In this case, (2) has one real root and it is a double root.
The general solution to (1) is then given by

y(t) = Aeλ1t + Bteλ2t.

Unwinding the Euler substitution, we get that our solution is

y(x) = Axλ + Bxλ ln(x),

where λ is the root of (2).
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Case Three: D is negative In this case, (2) has a pair of conjugate complex
roots. These will be

λ =
1− α

2
+ ı

√
4β − (α− 1)2

2
,

and

λ =
1− α

2
− ı

√
4β − (α− 1)2

2
.

The solution of (1) is given by

y(t) = e
1−α

2 t

(
A cos

(√
4β − (α− 1)2

2
t

)
+ B sin

(√
4β − (α− 1)2

2
t

))
.

Translating things back through the Euler substitution, we get

y(x) = x
1−α

2

(
A cos

(√
4β − (α− 1)2

2
ln(x)

)
+ B sin

(√
4β − (α− 1)2

2
ln(x)

))
.

Note that though this is very descriptive, it is ugly to write in general. That
is why it is better to memorize the technique than the answer.
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Problem 2: (For this problem and the next, we use the subscript notation for
derivatives.) We follow the procedure we outlined in class for the case of polar
coordinates in the plane. We find first that

ur = cos θ ux + sin θ uy

uθ =− r sin θ ux + r cos θ uy

uz =uz.

We then solve these equations for ux, uy and uz to find

ux = cos θ ur − 1
r

sin θ uθ

uy = sin θ ur +
1
r

cos θ uθ

uz = uz.

Now, we use these equations to compute out what the terms of the Laplace
operator look like in our new coordinates.

uxx =
∂

∂x
(ux) = cos θ(ux)r − 1

r
sin θ(ux)θ

= cos θ

[
cos θ urr +

1
r2

sin θ uθ − 1
r

sin θ urθ

]

− 1
r

sin θ

[
− sin θ ur + cos θ urθ − 1

r
cos θ uθ − 1

r
sin θ uθθ

]

Similarly,

uyy =
∂

∂y
(uy) = sin θ(uy)r +

1
r

cos θ(uy)θ

= sin θ

[
sin θ urr − 1

r2
cos θ uθ +

1
r

cos θ urθ

]

+
1
r

cos θ

[
cos θ ur + sin θ urθ − 1

r
sin θ uθ − 1

r
cos θ uθθ

]

Now, we combine these to find that

4u = uxx + uyy + uzz = urr +
1
r

ur +
1
r2

uθθ + uzz
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Problem 3: The procedure is the same for this problem as the last one. We find
the change of coordinate formulae for spherical derivatives in terms of rectan-
gular ones, invert this system of linear equations to find rectangular derivatives
in terms of spherical ones, and then compute out what the terms of the Laplace
operator look like in spherical coordinates and add.

So, we begin with

ur = sin θ cosϕ ux + sin θ sin ϕ uy + cos θ uz

uθ = r cos θ cos ϕ ux + r cos θ sin ϕ uy − r sin θ uz

uϕ = −r sin θ sin ϕ ux + r sin θ cosϕ uy.

When you invert this relationship (it helps to use Matlab. . . ) you find

ux = sin θ cosϕ ur +
1
r

cos θ cosϕ uθ − sin ϕ

r sin θ
uϕ

uy = sin θ sinϕ ur +
1
r

cos θ sin ϕ uθ +
cos ϕ

r sin θ
uϕ

uz = cos θ ux − 1
r

sin θ uθ.

Now for the tricky bit. We take each term of the Laplace operator and write it
in terms of the spherical coordinates. First,

uxx = sin θ cos ϕ

[
sin θ cos ϕ urr − 1

r2
cos θ cosϕ uθ +

1
r

cos θ cosϕ urθ +
sin ϕ

r2 sin θ
uϕ − sin ϕ

r sin θ
urϕ

]

+
1
r

cos θ cos ϕ

[
cos θ cosϕ ur + sin θ cosϕ urθ − 1

r
sin θ cos φ uθ +

1
r

cos θ cosφ uθθ

− sin ϕ

r sin θ
uϕθ +

cos θ sinϕ

r sin2 θ
uϕ

]

− sinϕ

r sin θ

[
− sin θ sin ϕ ur + sin θ cos ϕ urϕ +

1
r

cos θ cos ϕ uϕθ − 1
r

cos θ sin ϕ uθ

− cos ϕ

r sin θ
uϕ − sin ϕ

r sin θ
uϕϕ

]
.

And then,

uyy = sin θ sin ϕ

[
sin θ sin ϕ urr − 1

r2
cos θ sin ϕ uθ +

1
r

cos θ sin ϕ urθ − cosϕ

r2 sin θ
uϕ +

cos ϕ

r sin θ
urϕ

]

+
1
r

cos θ sin ϕ

[
cos θ sin ϕ ur + sin θ sin ϕ urθ − 1

r
sin θ sinφ uθ +

1
r

cos θ sin φ uθθ

+
cosϕ

r sin θ
uϕθ − cos θ cos ϕ

r sin2 θ
uϕ

]

+
cosϕ

r sin θ

[
sin θ cos ϕ ur + sin θ sin ϕ urϕ +

1
r

cos θ sin ϕ uϕθ +
1
r

cos θ cos ϕ uθ

− sin ϕ

r sin θ
uϕ +

cosϕ

r sin θ
uϕϕ

]
.
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Before things get any worse, lets add these. Lots of stuff cancels, and we use
the trig identity cos2 α + sin2 α = 1 about 10 times to find

uxx + uyy = sin2 θ urr +
[
− 2

r2
cos θ sin θ +

cos θ

r2 sin θ

]
uθ +

2 sin θ cos θ

r
urθ

+
[
1
r

+
cos2 θ

r

]
ur +

cos2 θ

r2
uθθ +

1
r2 sin2 θ

uϕϕ

Finally, we find that

uzz = cos2 θ urr +
sin2 θ

r
ur +

2 sin θ cos θ

r2
uθ − 2 sin θ cos θ

r
urθ +

sin2 θ

r2
uθθ.

Adding these last two equations, we find that

4u = uxx + uyy + uzz

= urr +
2
r
ur +

1
r2

(
cos θ

sin θ
uθ + uθθ

)
+

1
r2 sin2 θ

uϕϕ

=
1
r2

∂

∂r

(
r2 ∂u

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+

1
r2 sin2 θ

∂2u

∂ϕ2
.

So everything works out fine.
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Problem 4: We separate the variables by assuming that u has the form
u(t, θ) = T (t) · S(θ). We put this into the differential equation to find

1
α2

T ′S = TS′′,

which means that
T ′

α2T
=

S′′

S
.

The left hand side of this equation is independent of θ and the right hand side
is independent of t, so this quantity is a constant. Call it C. Then we get a pair
of ODE’s to solve.

S′′(θ) = C · S(θ)

T ′(t) = α2C · T (t)

We know that to solve the first one we have two cases. If C is positive, we
get exponentials. If C is negative, we get trig functions. In order to meet the
boundary conditions, we want S to be 2π-periodic, so we take C = −λ2 to be
negative. (To see this, note that periodicity means that T (t) = T (t+2π) for all
t. If you write down what this means for the choices of constants C, D and k
in a possible solution T (t) = Cekt + De−kt, you can solve the equation for t. In
that result, the one side is a constant, but t is arbitrary. This is a contradiction.)

The solution is then

S(θ) = A sin(λθ) + B cos(λθ).

To get exactly a period of 2π, we must take λ = n to be a positive integer.
Now our second equation takes the form

T ′(t) = −n2α2T (t).

If n > 0, this has solution T (t) = e−n2α2t. If n = 0, this has solution T (t) = A0,
a constant.

So, our solution to this problem is given by

u(t, θ) = A0 +
∞∑

n=1

(an cos(nθ) + bn sin(nθ)) ,

where the coefficients are chosen to meet the final boundary condition

f(θ) = u(0, θ) = A0 +
∞∑

n=1

(an cos(nθ) + bn sin(nθ)) .

That is, the coefficients are the Fourier coefficients of f .
Now, we see that in the limit as t →∞, all of the terms having exponentials

die off. The limiting value is then u(∞, θ) = A0, a constant. It means that
the final temperature distribution is that every point has the same equilibrium
temperature of A0. This makes good physical sense because A0 is the average
temperature of the initial distribution f(θ).
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Problem 5: First we handle part (a). It will make things faster if we agree to
write ξ = x2 + y2 + z2. We compute that

∂u

∂x
= −xξ−3/2,

∂u

∂y
= −yξ−3/2,

∂u

∂z
= −zξ−3/2,

and that

∂2u

∂x2
= −ξ−3/2 + 3x2ξ−5/2,

∂2u

∂y2
= −ξ−3/2 + 3y2ξ−5/2,

∂2u

∂z2
= −ξ−3/2 + 3z2ξ−5/2.

So that
4u = −3ξ−3/2 + 3ξ−5/2(x2 + y2 + z2) = 0.

Now consider part (b). Using the expression for the Laplacian in spherical
coordinates, we see that

4u =
1
r2

∂

∂r

(
r2 ∂u

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+

1
r2 sin2 θ

∂2u

∂ϕ2
.

But for us,
∂u

∂θ
= 0 =

∂2u

∂ϕ2
.

And it is easy to see that
∂u

∂r
=
−1
r2

.

So, putting in this information, we get

4u =
1
r2

∂

∂r

(
r2 ∂u

∂r

)
+ 0

=
1
r2

∂

∂r

(
r2 · −1

r2

)

=
1
r2

∂

∂r
(−1) = 0.

Finally, consider part (c). The key here is that taking partial derivatives of
v is essentially the same as taking them of u. We use the chain rule a couple of
times and the relevant bit is that

d(x− x0)
dx

= 1,
d(x− x0)

dy
= 0,

d(x− x0)
dz

= 0.

And similar things happen for y − y0 and z − z0. So in the long run, 4v =
4u = 0.
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Problem 6: If you use the recurrence formula, you get that

P0(x) = 1
P1(x) = x

P2(x) =
1
2

(
3x2 − 1

)

P3(x) =
1
2

(
5x3 − 3x

)

P4(x) =
1
8

(
35x4 − 30x2 + 3

)

P5(x) =
1
8

(
63x5 − 70x3 + 15x

)

P6(x) =
1
48

(
693x6 − 945x4 + 315x2 − 15

)

P7(x) =
1
48

(
1287x7 − 2079x5 + 945x3 − 105x

)
.

Graphs are now easy to produce. Notice that even though the coefficients look
pretty large, the functions are still not too big on the interval (−1, 1).
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