Homework Assignment \# 5

Due Friday, October 31, 2003.
The first bunch of problems each have two parts: Part (a) Find the Legendre series expansion for the function indicated. Part (b) Construct a graph of the first three interesting partial sums of the Legendre series on the same set of axes as the original function. (Each problem is worth 7 points: 5 for the series, 2 for the graph.)

1. $f(x)=x^{2}$ for $-1 \leq x \leq 1$.
2. $g(x)=x^{3}$ for $-1 \leq x \leq 1$.
3. $h(x)=x^{4}$ for $-1 \leq x \leq 1$.
4. $j(x)=x^{5}$ for $-1 \leq x \leq 1$.
5. $l(x)=|x|$ for $-1 \leq x \leq 1$.

Problem 6: (10 points) Let $f(x)=\cos (2 \pi x)$ for $-1 \leq x \leq 1$. Find the first five non-zero terms of the Legendre series for f. Graph these in a way that shows the convergence of the partial sums of the Legendre series to f.

Problem 7: (10 points) How does your answer for problem 6 compare to the Taylor series for $\cos (2 \pi x)$ at $x=0$? How do the partial sums of order 10 compare? Both methods are approximations by polynomials, so which one is "better"?

Bonus Problem 1: (10 points) Prove the least squares property for Legendre polynomials:

If f and f^{2} are integrable over $(-1,1)$, and $s_{n}(x)$ denotes the n-th partial sum of the Legendre series for f, then

$$
\int_{-1}^{1}\left(f(x)-s_{n}(x)\right)^{2} d x \leq \int_{-1}^{1}(f(x)-p(x))^{2} d x
$$

for any polynomial $p(x)$ of degree less than or equal to n.
(Hint: Follow the proof for Fourier series.)

