
Solutions to Homework # 5
Math 381, Rice University, Fall 2003

Problems 1-4: Since these are polynomials, it is not to hard to compute the
answers. First, note that a Legendre polynomial is orthogonal to any polyno-
mial of lower degree, so most of the coefficients will disappear. Then you can
explicitly calculate the few that are left by either using the definition and in-
tegrating, or by using a little linear algebra like we did in class. The answers
are

f(x) = x2 =
2
3
P2(x) +

1
3
P0(x),

g(x) = x3 =
2
5
P3(x) +

3
5
P1(x),

h(x) = x4 =
8
35

P4(x) +
4
7
P2(x)− 1

5
P0(x),

j(x) = x5 =
8
63

P5(x) +
4
9
P3(x) +

3
7
P1(x),

Problem 5: First note that the function is even, so for k odd, we know ak = 0.
We only need to find the even coefficients. To compute this example, it is easiest
to use the recurrence formula.

(2k + 1)xPk(x) = kPk−1(x) + (k + 1)Pk+1(x).

Using this and the fact that our function is even, we find the k-th Legendre
coefficient to be

ak =
2k + 1

2

∫ 1

−1

|x|Pk(x) dx

=
∫ 1

0

(2k + 1)xPk(x) dx

=
∫ 1

0

(kPk−1(x) + (k + 1)Pk+1(x)) dx

= k

∫ 1

0

Pk−1(x) dx + (k + 1)
∫ 1

0

Pk+1(x) dx.

But we figured out how to compute these funny integrals in class. (Also, they
can be found in your Textbook on page 234.) They are given by

∫ 1

0

Pn(x) dx =





1 n = 0
0 n = 2, 4, 6, . . .

(−1)(n−1)/2 1
n(n + 1)

(1 · 3 · 5 · · ·n)2

n!
n = 1, 3, 5, . . .

Recall that this was obtained while computing an in-class example. Since we
are only interested in k even, we only get integrals where the index is odd.
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Substituting this into our expression above, we see

ak = k

∫ 1

0

Pk−1(x) dx + (k + 1)
∫ 1

0

Pk+1(x) dx

= (−1)(k−2)/2 k

(k − 1)k
(1 · 3 · 5 · · · (k − 1))2

(k − 1)!
+ (−1)k/2 (k + 1)

(k + 1)(k + 2)
(1 · 3 · 5 · · · (k + 1))2

(k + 1)!

= (−1)(k−2)/2 (1 · 3 · 5 · · · (k − 1))2

(k − 1)!

[
1

k − 1
− (k + 1)2

k(k + 1)(k + 2)

]

= (−1)(k−2)/2 (1 · 3 · 5 · · · (k − 1))2

(k − 1)!

[
1

k − 1
− (k + 1)

k(k + 2)

]

= (−1)(k−2)/2 (1 · 3 · 5 · · · (k − 1))2

(k − 1)!

[
2k + 1

(k − 1)k(k + 2)

]

or . . .

= (−1)k/2+1(2k + 1)
1 · 3 · 5 · · · (k − 3)
2 · 4 · 6 · · · k(k + 2)

.

This final expression doesn’t make sense for k = 0, 2, but we can find those
from the recurrence formula by hand pretty quickly. For doing the rest of the
problem, we get that the 6th order partial sum is

s6(x) =
1
2
P0(x) +

5
8
P2(x)− 3

16
P4(x) +

13
128

P6(x).

This allows us to make nice graphs.
Problems 6-7: First we know that the Taylor polynomial of degree 10 for
f(x) = cos(2πx) is

Q10(x) = 1− 4π2

2
x2 +

16π4

24
x4 − 64π6

720
x6 +

256π8

40320
x8 − 1024π10

362880
x10.

Next, we compute the order 10 partial sum of the Legendre series for f(x).
I used Matlab to find the following:

∫ 1

−1

x2 cos(2πx) dx =
1
π2

∫ 1

−1

x4 cos(2πx) dx =
2
π2
− 3

π4

∫ 1

−1

x6 cos(2πx) dx =
3
π2
− 15

π4
+

45
2π6

∫ 1

−1

x8 cos(2πx) dx =
4
π2
− 42

π4
+

210
π6

− 315
π8

∫ 1

−1

x10 cos(2πx) dx =
5
π2
− 90

π4
+

945
π6

− 4725
π8

+
14175
2π10
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With these in hand, we can compute the Legendre coefficients of f(x) as

a2 =
15
4π2

≈ 0.38

a4 =
45
2π2

− 945
16π4

≈ 1.0671

a6 =
2184
32π2

− 32760
32π4

+
135135
64π6

≈ −1.3983

a8 =
153
π2

− 58905
8π4

+
2297295

32π6
− 34459425

256π8
≈ 0.3998

a10 ≈− .0601

Again, I used Matlab as a calculator. Here, it is helpful to notice that cos(2π)
is even and has average zero, so a0 = 0 and ak = 0 for k odd. Thus our 10th
order partial sum is

s10(x) = a2P2(x) + a4P4(x) + a6P6(x) + a8P8(x) + a10P10(x).

This allows us to make the graphs required for problem 6. Note that s10 is hard
to distinguish from f(x) with the naked eye.

For problem 7, note that the Taylor polynomial and s10 are both polynomials
of degree 10, though they have complicated coefficients. To compare them it is
best to look at their graphs. Again, I used Matlab. What becomes clear is that
the Taylor polynomials are very good near x = 0, but bad everywhere else. The
Legendre series is pretty close just about everywhere on the interval (−1, 1).
This matches our expectations, because this is how these things are defined.

At this point, two things should be clear to you. First, like Fourier series,
Legendre series are good for approximations over the interval where they are or-
thogonal. Second, Legendre series of even a simple function are hard to compute
by hand, so it is best to use a computer.

I’ll attach the graphs for problems 1-7 at the end of this document.

Bonus Problem: The proof here runs exactly like the case for Fourier series.
Fix our function f such that f and f2 are integrable on (−1, 1). Let sn(x)

denote the nth order partial sum of the Legendre series for f at x. Also, let
p(x) be any polynomial of degree at most n.

Let Rn(x) = f(x)− sn(x) be the error. Note that sn(x) is its own Legendre
series because it is a polynomial. We have also that

∫ 1

−1

Rn(x)q(x) dx = 0

for all polynomials q(x) of degree at most n. You can see this by direct compu-
tation, or by writing Rn as a Legendre series and using orthogonality.
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Now we have that
∫ 1

−1

(f(x)− p(x))2 dx =
∫ 1

−1

(Rn(x) + sn(x) + p(x))2 dx

=
∫ 1

−1

Rn(x)2 dx− 2
∫ 1

−1

Rn(x)(p(x)− sn(x)) dx +
∫ 1

−1

(p(x)− sn(x))2 dx

The second term in this last expression is zero by the remark above because
p(x)− sn(x) is a polynomial of degree at most n. The third term is the integral
of a non-negative function, so must be non-negative. This means that

∫ 1

−1

(f(x)− p(x))2 dx ≥
∫ 1

−1

Rn(x)2 dx =
∫ 1

−1

(f(x)− sn(x))2 dx.

This completes the proof. Notice that equality holds only if that third term
vanishes, that is if p(x) ≡ sn(x).
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The partial Legendre sums for j(x)=x5

j(x)=s
5
(x)

s
1
(x)

s
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Convergence of parial Legendre sums for cosine
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