Homework Assignment \# 6
Due Friday, November 21, 2003.
Problem 1: Find a function which is harmonic inside the sphere of radius 1 and which on the boundary sphere is equal to

$$
g(x, y, z)=\left(\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}\right)^{3}
$$

Problem 2: Perform separation of variables for the general ("unsymmetric") Laplace equation in spherical coordinates. You need only give the set of ordinary differential equations as your result.

Problem 3: Show that if $\lambda_{n, 1}<\lambda_{n, 2}<\ldots$ are the zeros of the Bessel function of order n, then the functions
$J_{n}\left(\lambda_{n, p} x\right) \cos (n y), \quad J_{m}\left(\lambda_{m, q} x\right) \sin (m y), \quad n, m, p, q$ are non-negative integers
form an orthogonal family over the region $0 \leq x \leq 1,-\pi \leq y \leq \pi$ with respect to the weight function $\rho(x, y)=x$.

Problem 4: Let J_{0} be the Bessel function of order zero and the first kind. Evaluate the integral $\int_{0}^{\lambda} x J_{0}(x) d x$ for an arbitrary $\lambda>0$.

Problem 5: Expand the function $f(x)=1$ in a Bessel series of order zero on the roots of the equation $J_{0}(x)=0$. Your answer should be written in terms of the roots $\lambda_{1}<\lambda_{2}<\ldots$ of J_{0}.

Problem 6: Let \mathcal{C} be the region bounded by the cylinder of radius one with the z-axis as its "center" curve and the planes $z=0$ and $z=A$. Find a function which is harmonic inside \mathcal{C}, takes the value 0 on the sides and top of the cylinder, and the value $f(x, y, 0)=1$ on the bottom.

Problem 7: What should the analog of Parseval's theorem for Bessel series of order zero be? Be careful about the weight function!

Problem 8: Use power series to prove the following recurrence relations for the Bessel functions $J_{n}(x)$.

- $J_{n}^{\prime}(x)=\frac{1}{2}\left(J_{n-1}(x)-J_{n+1}(x)\right)$
- $J_{n+1}(x)+J_{n-1}(x)=\frac{2 n}{x} J_{n}(x)$

Problem 9: Consider the following list of second order ordinary differential equations. Determine which are of "Sturm-Liouville" type. For those which are of Sturm-Liouville type, rewrite the equation to fit the standard form

$$
-\left[p(x) y^{\prime}\right]^{\prime}+q(x) y=\lambda r(x) y
$$

determine the appropriate weight function for orthogonality of solutions. Which of these would define regular Sturm-Liouville problems, and which would define singular problems?

Chebyshev's equation $\left(1-x^{2}\right) y^{\prime \prime}-x y^{\prime}+\alpha^{2} y=0$ for $-1<x<1$, where α is a constant.

Airy's equation $y^{\prime \prime}=k^{2} x y$ for $-\infty<x<\infty$, where k is a constant.
Hermite's equation $y^{\prime \prime}=2 x y^{\prime}-\lambda y$ for $-\infty<x<\infty$, where λ is a constant.
Laguerre's equation $x y^{\prime \prime}+(1-x) y^{\prime}+\lambda y=0$ for $0<x<\infty$.
Gauss' hypergeometric equation $x(1-x) y^{\prime \prime}+[\gamma-(1+\alpha+\beta) x] y^{\prime}-\alpha \beta y=0$ for $0<x<\infty$ where α, β, γ are constants.

Super Bonus Problem: Is there a 'Gibbs phenomenon' for the Bessel series of order zero or Legendre series? It is OK to pick a nice function and work only with it. For example, consider what happens near zero for the Legendre series of

$$
f(x)= \begin{cases}0, & -1<x<0 \\ 1, & 0 \leq x<1\end{cases}
$$

