
Solutions to Homework # 6
Math 381, Rice University, Fall 2003

Problem 1: The problem is about Laplace’s equation in a sphere, so we shall
use spherical coordinates (r, ϕ, θ). First, we translate our boundary condition.
Note that in spherical coordinates

g(r, ϕ, θ) = g(x, y, z) =

(
z√

x2 + y2 + z2

)3

=
(

r cos θ

r

)3

= cos3(θ).

The important thing to notice is that this is independent of the longitudinal
coordinate ϕ. This means that we can use our solution from class!

Applying our in-class work, we know that the solution to this problem is
given as

u(r, θ, ϕ) = u(r, θ) =
∞∑

n=0

αnPn(cos θ)rn

where the αn’s are chosen to be the Legendre series coefficients of the function
f(x) = g(1, cos−1 θ) = x3. In homework assignment # 4 we found that the
Legendre series for x3 is

x3 =
2
5
P3(x) +

3
5
P1(x).

Putting all this together, we see that our solution is

u(r, θ) =
2
5
P3(cos θ)r3 +

3
5
P1(cos θ)r

=
2r3

5

(
5
2

cos3 θ − 3
2

cos θ

)
+

3r

5
(cos θ)

= (r cos θ)3 − 3
5
(r2 − 1)r cos θ.

Since the original problem was stated in rectangular coordinates, we change
back to find our solution is

u(x, y, z) = z3 − 3z(x2 + y2 + z2 − 1)
5

.

It is not difficult to check that this agrees with g on the boundary of the sphere,
especially because this boundary is the surface r =

√
x2 + y2 + z2 = 1.
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Problem 2: Recall from homework 4 that in spherical coordinates (r, θ, ϕ), the
Laplace equation takes the form

4u =
1
r2

∂

∂r

(
r2 ∂u

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+

1
r2 sin2 θ

∂2u

∂ϕ2
.

In order to perform the separation of variables technique, we assume that u has
the form of a product

u(r, θ, ϕ) = R(r) · T (θ) · F (ϕ).

Substituting this into the equation 0 = 4u, we see that the functions R, T, F
must satisfy the following rule:

0 =
1
r2

∂

∂r

(
r2 ∂RTF

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂RTF

∂θ

)
+

1
r2 sin2 θ

∂2RTF

∂ϕ2

=
TF

r2

∂

∂r

(
r2R′

)
+

RF

r2 sin θ

∂

∂θ
(sin θT ′) +

RTF ′′

r2 sin2 θ

=
TF

r2

(
r2R′′ + 2rR′

)
+

RF

r2 sin θ
(sin θT ′′ + cos θT ′) +

RTF ′′

r2 sin2 θ

First, we separate out the ϕ variable. We rearrange the last equation to the
equivalent expression

−F ′′

F
=

r2 sin2 θ

RT

(
T

r2

(
r2R′′ + 2rR′

)
+

R

r2 sin θ
(sin θT ′′ + cos θT ′)

)

The left hand side of this equation is independent of r and θ and the right hand
side is independent of ϕ; therefore, this expression must be constant. Denoting
this constant by C, we get two equations.

F ′′ = −CF,

C =
r2 sin2 θ

RT

(
T

r2

(
r2R′′ + 2rR′

)
+

R

r2 sin θ
(sin θT ′′ + cos θT ′)

)

To make things a bit easier to read, we now simplify the second equation. The
simplified version is

C =
sin2 θ

R

(
r2R′′ + 2rR′

)
+

sin θ

T
(sin θT ′′ + cos θT ′) .

Next, we separate the two variables which remain here.

r2R′′ + 2rR′

R
= −T ′′ + cot θT ′ − C csc2 θT

T
.

Now the left hand side is independent of θ and the right hand side is independent
of r. Again, this quantity must be a constant. We denote this constant by A.
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Putting all of this information together, we have the following three ordinary
differential equations to solve.

F ′′ + C · F =0

r2R′′ + 2rR′ −A ·R =0

T ′′ + cot θT ′
(

A− C

sin2 θ

)
T =0.

Notice that if our solution is assumed to be independent of ϕ, then we get that
C = 0 and the situation reduces to the one we studied in class.

Problem 3: Every single integral that one needs to check here is of the form
∫ π

−π

∫ 1

0

A(x)B(y) dx dy,

where A(x) is a product of Bessel functions and B(y) is a product of trig func-
tions. If we do the integration with respect to y first, we see by the orthogonality
of sines and cosines that the answer will be zero unless m = n and the two func-
tions are either both sin or both cos. In the case where m = n and the functions
agree, we get a positive constant (actually π) times the integral

∫ 1

0

Jn(λn,px) · Jn(λn,qx) dx.

But by the orthogonality properties of Bessel functions, this is zero unless p = q.
Therefore, if we take any two functions from the family described in the problem
which are different, we get that they are orthogonal.

Problem 4: Since J0 is a solution of Bessel’s equation of order zero, we see
that

J ′′0 (x) +
1
x

J ′0(x) + J0(x) = 0.

Multiplying through by x we find

0 = x · J ′′0 (x) + J ′0(x) + x · J0(x) = [x · J ′0(x)]′ + x · J0(x).

Therefore, by the Fundamental Theorem of Calculus,

∫ λ

0

xJ0(x) dx = −λ · J ′0(λ).
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Problem 5: Using the last problem, we see that the kth coefficient is

αk =
2

J ′0(λk)2

∫ 1

0

xJ0(λkx) dx

=
2

λ2
kJ ′0(λk)2

∫ λk

0

uJ0(u) du

=
2

λ2
kJ ′0(λk)2

(−λkJ ′0(λk))

=
−2

λkJ ′0(λk)
.

Therefore the series is

1 = f(x) =
∞∑

k=1

−2
λkJ ′0(λk)

J0(λkx)

Problem 6: Note that the boundary conditions on this problem are rotationally
symmetric! Therefore, by the separation of variables work we did in class, we
know that a product solution of the form will be u(r, z) = Z(z) ·R(r), where Z
and R solve the equations

Z ′′ = −C · Z, R′′ +
1
r
R′ − C ·R = 0.

In order to meet the boundary conditions at z = A and z = 0, it is most
appropriate to use exponentials to solve the equation for Z. Thus we take
C = −λ2 < 0. Then we get that

Z(z) = Beλz + De−λx, R(r) = J0(λr).

In order that the condition of vanishing on the sides of the cylinder, we should
choose λ to be a zero of J0. To make the function vanish at the top of the
cylinder, we need to choose B and D so that Z(z) = sinh(λ(A− z)).

So, if we let λ1 < λ2 < λ3 < . . . be the roots of J0(x) = 0, then our solution
looks like

u(r, z) =
∞∑

i=1

ci sinh(λi(A− z))J0(λir).

To meet our final boundary condition, we want

1 = f(r) =
∞∑

i=1

ci sinh(λiA)J0(λir).

This is just a Bessel series expansion! So we only need to choose ci to be the ith
Bessel series coefficient divided by sinh(λiA). We computed these coefficients
in the last problem, so we get a final solution of

u(r, z) =
∞∑

i=1

−2
λiJ ′0(λi) sinh(λiA)

sinh(λi(A− z))J0(λir)
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Problem 7: For Bessel series of order zero indexed on the roots of J0, the
analog of Parseval’s theorem would read as follows:

Theorem 1 Let f be a continuous function on the interval [0, 1]. Order the
roots of the equation J0(x) = 0 as λ1 < λ2 < λ3 < . . .. Let

αk =
2

J0(λk)2 + J ′0(λk)2

∫ 1

0

rf(r)J0(λkr) dr

be the kth coefficient of the Bessel series of order zero of f . Then
∞∑

k=1

J0(λk)2 + J ′0(λk)2

2
α2

k =
∫ 1

0

x[f(x)]2 dx.

Again, this should be interpreted as showing that the weighted mean square
error goes to zero, because we can calculate the weighted mean square error of
the nth partial sum as the difference between the term on the right and the nth
partial sum of the series on the left.

It is also possible to go with the hypothesis ”f and f2 are integrable on
(0, 1)” instead of ”f is continuous”.

Problem 8: It is helpful in this problem to have a closed form for the infinite
sum which represents Jn(x). This is

Jn(x) =
xn

2n · n!

∞∑

k=0

(−1)kx2k

22k · k! · (n + 1) · · · (n + k)

=
∞∑

k=0

(−1)kxn+2k

2n+2k · k! · (n + k)!
.

Using this, we can then compute that

1
2

(Jn−1(x)− Jn+1(x)) =

=
1
2

( ∞∑

l=0

(−1)lxn+2l−1

2n+2l−1 · l! · (n + l − 1)!
−

∞∑

l=1

(−1)(−1)lxn+2l−1

2n+2l−1 · (l − 1)! · (n + l)!

)

=
1
2

(
xn−1

2n−1 · (n− 1)!
+

∞∑

l=1

(−1)lxn+2l−1

2n+2l−1

[
1

l! · (n + l − 1)!
+

1
(l − 1)! · (n + l)!

])

=
nxn−1

2n · n!
+

∞∑

l=1

(−1)lxn+2l−1

2n+2l

(n + l) + l

l! · (n + l)!

=
∞∑

l=0

(n + 2l)(−1)kxn+2l−1

2n+2l · l! · (n + l)!
= J ′n(x)

Note that to get the first line, we re-indexed the sum for Jn+1 so that the
terms would line up with those of Jn−1. This proves the first of the two desired
relations.
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For the second equality, we proceed in a similar fashion.

Jn−1(x) + Jn+1(x) =
∞∑

l=0

(−1)lxn+2l−1

2n+2l−1 · l! · (n + l − 1)!
+

∞∑

l=1

(−1)(−1)lxn+2l−1

2n+2l−1 · (l − 1)! · (n + l)!

=
xn−1

2n−1 · (n− 1)!
+

∞∑

l=1

(−1)lxn+2l−1

2n+2l−1

[
1

l! · (n + l − 1)!
− 1

(l − 1)! · (n + l)!

]

=
nxn−1

2n−1 · n!
+

∞∑

l=1

(−1)lxn+2l−1

2n+2l−1

(n + l)− l

l! · (n + l)!

=
∞∑

l=0

n(−1)kxn+2l−1

2n+2l−1 · l! · (n + l)!

=
2n

x

∞∑

l=0

(−1)lxn+2l

2n+2l · l! · (n + l)!
=

2n

x
Jn(x)

This proves the second formula, and we are done.

Problem 9: All of these equations give rise to Sturm-Liouville problems.
To handle Chebyshev’s equation, multiply through by (1 − x2)−1/2. Then

you find that p(x) =
√

1− x2, q(x) = 0 and the weight function is r(x) =
(1−x2)−1/2. This problem is singular because p and r are ’bad’ at the boundary.
In fact, r isn’t even continuous on the closed interval [−1, 1] because it blows
up.

−[
√

1− x2 · y′]′ = λ(1− x2)−1/2 · y
For Airy’s equation, we see that p(x) = 1, q(x) = 0 and our weight function

is r(x) = x. Here, r blows up at the boundary points ±∞, so the problem is
singular.

−[y′]′ = λx · y
Hermite’s equation requires multiplying through by e−x2

to put it into stan-
dard form. We get that p(x) = e−x2

, q(x) = 0 and the weight function is
r(x) = e−x2

. Both p and r vanish at the boundary points ±∞, so this problem
is singular.

−[e−x2 · y′]′ = λe−x2 · y
For Laguerre’s equation, one must multiply through by e−x. Then we find

p(x) = xe−x, q(x) = 0 and the weight function is r(x) = e−x. Again, this
problem is singular because p and r vanish at endpoint +∞ (in fact, p also
vanishes at x = 0).

−[xe−x · y′]′ = λe−x · y
Finally, for Gauss’ hypergeometric equation, we must multiply through by

xγ−1(1 − x)α+β−γ ( I did the integral that results by using partial fractions).
Then p(x) = xγ(1 − x)1+α+β−γ , q(x) = 0 and the weight function is r(x) =
xγ−1(1−x)α+β−γ . Whether or not this is a singular or regular problem depends
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on the values of α, β, γ. As long as γ 6= 1, r will vanish or explode at x = 0 and
we will have a singular problem. If γ = 1, then p vanishes at x = 0. So this
problem is always singular.

−[xγ(1− x)1+α+β−γ · y′]′ = λxγ−1(1− x)α+β−γ · y

Super Bonus Problem: I’ll grade this on a case by case basis. . .
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