
Solutions to Homework # 7
Math 381, Rice University, Fall 2003

Problem 1: We work each by hand using integration by parts.

a) We integrate by parts twice to find that

L(eat cos(kt)) =
∫ ∞

0

e−steat cos(kt) dt

=
∫ ∞

0

e−(s−a)t cos(kt) dt

=
−e−(s−a)t cos(kt)

s− a
|∞0 −

∫ ∞

0

ke−(s−a)t sin(kt)
s− a

dt

=
1

s− a
− k

s− a

(∫ ∞

0

e−(s−a)t sin(kt) dt

)

=
1

s− a
− k

s− a

(−e−(s−a)t sin(kt)
s− a

|∞0 +
∫ ∞

0

ke−(s−a)t cos(kt)
s− a

dt

)

=
1

s− a
− k2

(s− a)2
L(eat cos(kt)).

We solve this equation to find L(eat cos(kt)) =
s− a

(s− a)2 + k2
.

b) Integrating by parts once implies that

L(tne−at) =
∫ ∞

0

e−sttne−at dt

=
∫ ∞

0

e−(s+a)ttn dt

=
−tne−(s+a)t

s + a
|∞0 +

∫ ∞

0

ne−(s+a)ttn−1

s− a
dt

= 0 +
n

s + a
L(tn−1e−at).

Using this n times, decreasing the power of t each time, we see that

L(tne−at) =
n!

(s + a)n

∫ ∞

0

e−(s+a)t dt =
n!

(s + a)n+1
.
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c) This one is similar to part (a), but the limits of integration turn out to be
different.

L(f) =
∫ ∞

0

f(t)e−st dt

=
∫ π

0

e−st sin(t) dt

= e−sπ + 1− s

∫ π

0

e−st cos(t) dt

= e−sπ + 1− s

(
0 + s

∫ π

0

e−st sin(t) dt

)

= e−sπ + 1− s2L(f).

We then solve this equation to find that

L(f) =
e−sπ + 1
s2 + 1

.

d) This one only requires one direct integration.

L(f) =
∫ ∞

0

f(t)e−st dt

=
∫ b

a

e−st dt

=
−1
s

e−st|ba =
e−sa − e−sb

s
.

Problem 2: For these we are free to use the results developed in class and in
the book.

a) L(t3) = L(t3 · 1) = (−1)3
d3

ds3

(
1
s

)
=

6
s4

.

b) L(t2e−3t) = (−1)2
d2

ds2

(
1

s + 3

)
=

2
(s + 3)3

.

c) This one requires remembering that sinh(x) = (ex − e−x)/2.

L(cos(at) sinh(at)) =
1
2
L(cos(at)(eat − e−at))

=
1
2

(L(eat cos(at))− L(e−at cos(at))
)

=
1
2

(
s− a

(s− a)2 + a2
− s + a

(s + a)2 + a2

)

If you want, you can simplify this so that it matches the back of the book:

L(cos(at) sinh(at)) =
a(s2 − 2a2)
s4 + 4a4

.
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d) For this, recall that the rule about multiplying by an exponential implies
that

L(et sin(2t)) =
2

(s− 1)2 + 4
.

So now using the rule about multiplying by t, we get

L(tet sin(2t)) = (−1)
d

ds

(
2

(s− 1)2 + 4

)

=
4(s− 1)

((s− 1) + 4)2
.

e) Again, this uses the rule about multiplying by t and some algebra.

L(t2 sin(at)) = (−1)2
d2

ds2

(
a

s2 + a2

)

=
6as2 − 2a3

(s2 + a2)3
.

f) And finally. . .

L(eat cosh(bt)) =
s− a

(s− a)2 − b2
.

Problem 3: For most of these we need to use a partial fraction decomposition.

a) Note that
1

s2 − 3s + 2
=

1
s− 2

− 1
s− 1

, so

L−1

(
1

s2 − 3s + 2

)
= e2t − et.

b) We have, by completing the square,

1
s2 − 2s + 5

=
s

(s− 1)2 + 4
=

s− 1
(s− 1)2 + 4

+
1

(s− 1)2 + 4
.

So

L−1

(
1

s2 − 2s + 5

)
= et cos(2t) +

1
2
et sin(2t).

c) I got lots of different answers for this one before I came up with the answer
the book claimed. This happens sometimes: there may be several equiv-
alent ways to write the answer, but no easy way to see the equivalence.
We see that

s + 1
s4 + 1

=
s

s4 + 1
+

1
s4 + 1

.
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Now if we choose a = 1/
√

2, then we can use several items on the transform
table to get the answer the book lists. Specifically, you need to rewrite
the above as

s + 1
s4 + 1

=
2a2s

s4 + 4a4
+

1√
2

4a3

s4 + 4a4
.

So then

L−1

(
s + 1
s4 + 1

)
= sin(at) sinh(at)+

1√
2
[sin(at) cosh(at)− cos(at) sinh(at)].

Finally, note that at = T = t/
√

2, so we match. . .

d) Again by partial fractions,
2s + 1

s(s + 1)(s + 2)
=

1/2
s

+
1

s + 1
− 3/2

s + 2
. Which

means that

L−1

(
2s + 1

s(s + 1)(s + 2)

)
=

1
2

+ e−t − 3
2
e−2t.

e) Again by partial fractions,
1

s2(s2 + 1)
=

1
s2
− 1

s2 + 1
. This means that

L−1

(
1

s2(s2 + 1)

)
= t− sin(t).

f) This one only uses the ”translation to exponential” property of the Laplace
transform.

L−1

(
e−s

s + 1

)
=

{
0, 0 ≤ t ≤ 1

e−(t−1), t > 1
.

Problem 4:

a) We take the Laplace transform with respect to t.

−[y′(0) + sy(0)] + s2y(s) + 2[−y(0) + sy(s)] + 2y = 0.

Together with the initial conditions, we get

1− s + s2y − 2 + 2 + 2sy + 2y = 0.

This equation has solution

y =
s + 1

(s + 1)2 + 1
.

Taking the inverse transform we find that

y(t) = e−t cos(t).

4



b) The Laplace transform of the equation is

−[y′(0) + sy(0)] + s2y + 2[−y(0) + sy] + 2y = 2
1
s
.

Applying the initial condition, we get

−1 + s2y + 2sy + 2y =
2
s
.

This equation has solution

y =
1
s
− s + 1

(s + 1)2 + 1
.

Hence,
y(t) = 1− e−t cos(t).

c) The Laplace transform of the equation is

−[y′(0) + sy(0)] + s2y(s)− 2y(0) + 2sy(s) + 2y = e−s.

With the initial conditions, we get

y(s2 + 2s + 2)− (s + 1) = e−s.

We solve this algebraically to obtain

y =
e−s

(s + 1)2 + 1
+

s + 1
(s + 1)2 + 1

.

Taking the inverse transform we find

y(t) =
∫ ∞

0

δ(t− u− 1)e−u sin(u) du + e−t cos(t)

=
{

0, 0 ≤ t < 1
e−(t−1) sin(t− 1) + e−t cos(t), t ≥ 1.

d) Things proceed just like above, when we solve for y we get

y =
f

(s + 1)2 + 1
+

y0 + y′0
(s + 1)2 + 1

+
y0(s + 1)

(s + 1)2 + 1
.

Taking the inverse transform, we get

y(t) = e−ty0 cos(t) + e−t(y0 + y′0) sin(t) + e−t

∫ t

0

f(u)eu sin(t− u) du.
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Problem 5: We take the Laplace transform with respect to t. After applying
the initial conditions, we see that

∂

∂x
z(x, s) = (1− s)z(x, s) + 1.

This is an inhomogeneous equation, but the inhomogeneity is a constant, so
it is not difficult to use a guess and check approach or even another Laplace
transform to find its solution. It is

z(x, s) =
e−s

s
− e−s

s− 1
+

1
s− 1

.

Now, we take the inverse transform. It is important to keep careful track of
what happens in the ”translation to exponential” step. We get

z(x, t) = ex ·
{

0, 0 ≤ t < x
1, t ≥ x

}
− ex ·

{
0, 0 ≤ t < x

et−x, t ≥ x

}
+ et

=
{

et, 0 ≤ t < x
ex, t ≥ x.

Problem 6: Again, we use the Laplace transform on t. We get

∂2

∂x2
ϕ(x, s) + 1 + s− s2ϕ =

1
s
.

This is an inhomogeneous equation, where the inhomogeneous term is a con-
stant. I used the guess and check method together with the solution to the
homogeneous version to find

ϕ(x, s) = A(s)e−sx + B(s)esx +
1
s

+
1
s2
− 1

s3
.

Since for really large values of x the second term cannot be a transform unless
B = 0, we eliminate that term. Using the boundary condition ϕ(0, s) = 1/s, we

solve for A to find A(s) =
1
s3
− 1

s2
. This means that

ϕ(x, s) =
e−xs

s3
− e−xs

s2
+

1
s

+
1
s2
− 1

s3
.

Finally, we take the inverse transform to find

ϕ(x, t) = 1 + t− 1
2
t2 +

{
0, 0 ≤ t < x

1
2
(t− x)2, t ≥ x

}
−

{
0, 0 ≤ t < x

t− x, t ≥ x

}

which simplifies to

ϕ(x, t) =





1 + t +
1
2
, 0 ≤ t < x

1− tx + x +
1
2
x2, t ≥ x




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Problem 7: Using the method above but stopping before you take the inverse
transform, it is not hard to find the equation the book quotes. It is even easier
if you remember that the general solution of the equation yxx = a2y can be
written as y = A sinh(ax) + B cosh(ax). Applying the initial conditions finishes
the first step.

The interesting part of the problem starts after the first equation. To see
the next step, one has to use the rule about the transform of a derivative and
the rule about the inverse transform of a product. We start by noting

L
(

∂

∂t
A(x, t)

)
= −A(x, 0) + sL(A(x, s)) = −A(x, 0) +

sinh(sx/c)
sinh(sl/c)

.

The next important step is that A(x, 0) = 0. This follows from the discussion
we had in class about the way that a Laplace transform must decay (or from your
text in chapter 2 during the same type of discussion) that lims→∞ sA(x, s) =
A(x, 0). But in our case, this limit is easy to evaluate for all 0 < x < l.

So now, by the rule about inverse transforms of products, we see that

ϕ(x, t) =
∫ t

0

∂A(x, t− u)
∂t

f(u) du.

The final statement now follows by using integration by parts.
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