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Abstract 

Bootstrap Effect Sizes (bootES; Gerlanc & Kirby, 2012) is a free, open source software package 

for R (R Development Core Team, 2012), which is a language and environment for statistical 

computing.  BootES computes both unstandardized and standardized effect sizes (such as 

Cohen’s d, Hedges’s g, and Pearson’s r), and makes easily available for the first time the 

computation of their bootstrap CIs.  In this article we illustrate how to use bootES to find effect 

sizes for contrasts in between-subjects, within-subjects, and mixed factorial designs, and to find 

bootstrap CIs for correlations, and differences between correlations.  An appendix gives a brief 

introduction to R that will allow readers to use bootES without having prior knowledge of R. 
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BootES:  An R Package for Bootstrap Confidence Intervals on Effect Sizes 

Just before the turn of the millennium, the APA Task Force on Statistical Inference 

recommended that “Interval estimates should be given for any effect sizes involving principal 

outcomes” (Wilkinson, 1999, p. 599).  This recommendation was adopted in subsequent editions 

of the Publication Manual of the American Psychological Association.  For example, the current 

edition states “complete reporting of … estimates of appropriate effect sizes and confidence 

intervals are the minimum expectations for all APA journals” (APA, 2009, p. 33).  Reporting 

confidence intervals (CIs) for effect sizes is the current “best practice” in social science research 

(Cumming & Fidler, 2009; Kline, 2004; Steiger, 2004; Thompson, 2002).  Even so, 

psychologists and other social scientists have been slow to include CIs in their research reports.  

Persistence by Geoffrey Loftus raised the percentage of articles that reported CIs in Memory & 

Cognition from 8% to 45% during his tenure as editor, but this fell to 27% after his term ended 

(Finch et al., 2004).  Finch et al. estimated that only about 22% of published experimental 

psychological research includes CIs. 

One hurdle for reporting CIs is that standard statistical software packages provide only 

rudimentary support for CIs.  It is difficult for authors to follow the APA Task Force’s 

recommendation when the software that they know how to use will not compute CIs for all of 

their primary effects without the programming of specialized routines.  Most standard programs 

compute CIs only for sample statistics or parameter estimates, such as means, and typically those 

CIs are computed using traditional methods that are known to have poor coverage (i.e., the 

proportion of randomly sampled CIs that contain, or cover, the fixed population parameter 

differs markedly from the purported confidence level). 

Kelley (2007a, 2007b) made a major contribution to available software with the 

introduction of MBESS, an R package for generating exact CIs for some effect-size measures 

(Kelley & Keke, 2012). Exact CIs on effect sizes are generated by finding the most extreme 

(upper and lower) population effect sizes whose theoretical cumulative probability distributions 

would yield the observed sample’s effect size with a total probability equal to the desired level of 
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confidence.  These upper and lower extremes are found using a computationally intensive 

iterative procedure.  The routines in the MBESS package were based on those described by 

Steiger and Fouladi (1992, 1997) and Steiger (2004).  When the underlying data is normally 

distributed, these CIs are exact, in that they represent the theoretical best estimates.  However, as 

Kelley himself has shown, exact CIs are nonrobust to departures from normality (Algina, 

Keselman, & Penfield, 2006; Kelley, 2005).  When the data are known not to be normally 

distributed, or when the distribution is unknown (the most common situation for most research), 

a better approach is to use bootstrap CIs, which we describe in the next section.   

Our purpose in this article is to illustrate usage of bootES (bootstrap Effect Sizes, Gerlanc 

& Kirby, 2012), a free software package for R.  We developed this package to make it easy for 

psychologists and other scientists to generate effect size estimates and their bootstrap CIs.  These 

include unstandardized and standardized effect-size estimates and their CIs for mean effects, 

mean differences, contrasts, correlations, and differences between correlations.  Both between-

subject and within-subject effect sizes, and mixtures of the two kinds, can be handled, as 

described below.  

R is a free, open source language and environment for statistical computing (R 

Development Core Team, 2012).  It is rapidly increasing in popularity because of its price, 

power, and the development of specialized packages.  R’s reputation for a “steep learning curve” 

is well deserved, partly because R’s thorough on-line documentation is written primarily by 

developers for developers.  However, R is easy to use if one is shown how.  In Appendix 1 and 

the supporting command files we provide all of the R commands that a user would need to know 

to compute all of the CIs described in this article, from importing the data to saving the results.  

Thus, the reader can perform all of the analyses in this article without consulting any other R 

documentation.  Over time, the reader may then begin to use some of R’s additional built-in 

functionality, such as its publication-quality graphics, or any of the excellent packages that have 

been developed for psychological research, such as MBESS and the psych package (Revelle, 

2012). 



BOOTSTRAP CONFIDENCE INTERVALS 5 

Bootstrap Confidence Intervals 

Confidence Intervals 

Point estimates of effect sizes should always be accompanied by a measure of variability, 

and confidence intervals provide an especially informative measure (APA, 2009, p. 34).  In this 

section we provide a brief introduction to bootstrap CIs.  For readers who wish additional 

background we recommend Robertson (1991), Efron and Tibshirani (1993) and Carpenter and 

Bithell (2000) as good starting points. 

A population parameter, θ, such as a population effect size, can usually be obtained from 

its corresponding sample statistic,  !̂ .  However, we also would like to know the precision of the 

estimate.  What range of values of θ are plausible, given that we have observed  !̂ ?  The range of 

plausible values is provided by a confidence interval (CI) (Efron & Tibshirani, 1993), where 

“plausibility” is defined by a specified probability (typically, 95%) that intervals of the type 

computed would cover the population parameter.  (The “alpha-level,” α, is equal to 1 minus the 

desired confidence level expressed as a proportion; so, for a 95% CI, α  = .05.  It gives the 

nominal proportion of samples for which CIs would fail to cover the population parameter.) 

Finding a CI for  !̂  requires information about its population distribution, that is, the 

distribution of  !̂  that one would obtain from infinite sampling replications.  Unfortunately, this 

distribution often is unknown.  To fill this void, traditional parametric CI methods start with an 

assumption about the shape of the population distribution.  For example, it is common to assume 

that a population of sample mean differences is distributed as (central) t.  However, this will only 

be true under the null hypothesis and when the population scores are normally distributed.  In 

contrast, exact CI methods assume, more appropriately, that the population of mean differences 

is distributed as a non-central t, with a population parameter equal to the observed difference.  In 

both methods the assumed theoretical distribution is used as the basis for constructing the CI 

around  !̂ .  CI coverage performance depends on the appropriateness of the distributional 

assumptions, and it is often quite poor (DiCiccio & Efron, 1996). 

Bootstrap Methods 
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Bootstrap methods (Efron, 1979) approximate the unknown distribution of  !̂  from the 

data sample itself.  This is done by repeatedly drawing random samples (called resamples), from 

the original data sample.  These resamples contain the same number of data points, N, as the 

original sample, and because the values are drawn with replacement the same sample value can 

occur more than once within a resample.  The desired statistic  !̂  is calculated anew for each 

resample; denote each resample statistic  !̂
* .  If the number of bootstrap resamples (R) were, say, 

2000, then we would have 2000  !̂
* s.  The distribution of these  !̂

* s serves as an empirical 

approximation of the population distribution of  !̂ , and we can use it to find a CI for  !̂ .  Most 

simply, to find a 95% CI, put the resampled values of  !̂
*  in rank order and locate the values at 

the 2.5 and 97.5 centiles in the distribution.  This is called a “percentile” bootstrap CI.  Such 

intervals make no assumptions about the shape of the distribution of  !̂ . 

Such simple percentile bootstrap CIs have an advantage in computational transparency, 

but they suffer from two sources of inaccuracy (DiCiccio & Efron, 1996; Efron, 1987).  First, 

many sample statistics are biased estimators of their corresponding population parameters, such 

that the expected value of  !̂  does not equal θ.  Second, the standard error of an estimate of  !̂  

may not be independent of the value of θ; consequently, even for unbiased estimates the lower 

and upper percentile cut-offs may not be the same number of standard-error units from  !̂  

(DiCiccio & Efron, 1996, p. 194).  The bias-corrected-and-accelerated (BCa) bootstrap method, 

which was introduced by Efron (1987), reduces both sources of inaccuracy by adjusting the 

percentile cut-offs in the distribution of the resampled  !̂
*  for both bias and for the rate of 

change, called the acceleration, of  !̂  with respect to change in θ.  The details of the BCa method 

are provided in Appendix 2. 

The BCa method has two important properties that give it an advantage over other 

methods in many contexts (Efron, 1987).  First, the CI coverage errors for the BCa method go to 

zero with increases in sample size N at a rate of 1/N, whereas the tail coverage errors for 

traditional and simple percentile bootstrap methods go to zero at the much slower rate of   1/ N .  

This is one reason why BCa intervals outperform traditional and percentile bootstrap CIs in most 
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applications.  For both normal and nonnormal population distributions with sample sizes of 

roughly 20 or more, Monte Carlo research has shown that BCa intervals yield small coverage 

errors for means, medians, and variances (Efron & Tibshirani, 1993; Lei & Smith, 2003), 

correlations (DiCiccio & Efron, 1996; Lei & Smith, 2003; Li, Cui, & Chan, 2012; Padilla & 

Veprinsky, 2012), and Cohen’s d (Algina et al., 2006; Kelley, 2005).  The magnitude of the 

coverage errors, and whether they are liberal or conservative, depends on the particular statistic 

and the population distribution, and BCa intervals can be outperformed by other methods in 

particular circumstances (e.g., see Hess, Hogarty, Ferron, & Kromrey, 2007).  Nevertheless, their 

relative performance is typically quite good, and they are recommended for general use in a wide 

variety of applications (Carpenter & Bithell, 2000; Efron & Tibshirani, 1993, p. 188). 

A second important property of the BCa method is that, like the percentile method, it is 

transformation respecting.  This means that for a monotonic transformation f of the statistic θ, 

the endpoints θlow and θhi of the CI on θ can be transformed to find the endpoints f(θlow) and f(θhi) 

of the CI on f(θ).  This is important because the standardized effect sizes that are implemented in 

bootES that have not been studied directly are monotonic transformations of Cohen’s d (defined 

below), which has been studied extensively in Monte Carlo simulations.  Thus, the coverage 

performance found in previous Monte Carlo results should hold for our other effect sizes as well. 

The BCa method was implemented by Canty and Ripley (2012) in the boot.ci function in 

the R boot() package.  BootES uses the boot.ci implementation of BCa as its default method.  

Other bootstrap methods are available as described in the options section below. 

Limitations and Sample Sizes 

Bootstrap CIs do not cure the problems of small sample sizes.  Although BCa CIs may 

outperform traditional CIs for small samples from non-normal populations (see, e.g., Davison & 

Hinkley, 1997, pp. 230-231), their coverage for small sample sizes can still differ substantially 

from the nominal 1 – α.  This is because bootstrap CIs depend heavily on sample values in the 

tails of the sample distribution.  The several smallest and largest resampled statistics will be 

computed from those resamples that happen to draw observations primarily from the tails of the 
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distribution of sample values.  For small samples the tails are sparsely populated, so the 

percentile cut-offs could be determined by a very small number of sample values.  The more 

extreme the confidence level (i.e., the smaller the α), the more the cut-off will be determined by 

a small number of extreme sample values.  The BCa method can exacerbate the problem because 

the adjusted cut-offs may move even further into the tails of the distribution.  When this is a 

problem, increasing the sample size and the number of bootstrap resamples can improve 

coverage. 

Monte Carlo simulations of BCa bootstrap CIs have been conducted for a wide variety of 

statistics.  Here we briefly summarize four of these, to provide as sense of BCa CI coverage in 

small samples.  Kelley (2005) found excellent coverage in Monte Carlo simulations of BCa 

intervals across a range of population distributions of Cohen’s d; for sample sizes of n1 = n2 = 15 

or more, coverage probabilities for 95% CIs ranged from 94.1% to 96.5%.  For example, for the 

difference between the means of two normal distributions with equal means and variances, the 

coverage probability was 95.96% (Kelley, 2005, Table 1).  Algina et al. (2006) also found very 

good coverage for Cohen’s d when n1 = n2 = 25, for all but their most nonnormal populations.  

(Notably, Algina et al. refrained from simulating smaller samples because they “wanted to avoid 

encouraging the use of small sample sizes.”)  Davidson and Hinckley (1997, Table 5.8) 

computed the ratio of two means, each drawn from different gamma distributions, which had a 

highly nonnormal population distribution.  They observed a respectable 93.2% coverage for 95% 

BCa intervals when n1 = n2 = 25.  Finally, for nominal 99% CIs, Carpenter and Bithell (2000, 

Table IV) observed a 98.94% coverage rate for BCa intervals on means drawn from an inverse 

exponential distribution (a moderately nonnormal distribution) when n = 20.  However, with a 

sample size of n = 5 the error rate was more than 1.8% just in the upper tail alone. 

As a consequence of these and other simulation results, for 95% BCa CIs we recommend 

sample sizes of approximately 20 or more in each group.  To be safe, larger sample sizes, or 

robust effect size estimates (Algina et al., 2006), should be considered when (a) the distribution 

of sample values is strongly nonnormal, (b) a smaller α is desired, such as for a 99% CI, and the 
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distribution of sample values is noticeably nonnormal, or (c) the effect size is large (and 

therefore may have arisen from a nonnormal distribution of population effect sizes). 

Number of Resamples 

Bootstrap methods are computationally intensive in that they require a large number of 

resamples and calculations.  When these methods were being developed in the 1980s the 

computing time required to generate several hundred resamples was substantial, and some effort 

was devoted to determining the smallest number of resamples that could yield adequate CI 

coverage (e.g., Hall, 1986).  For a 90% CI, Efron and Tibshirani (1993, p. 275) recommended 

that the number of resamples should be “≥ 500 or 1000.”  Davison and Hinkley (1997, p. 202) 

said “if confidence levels 0.95 and 0.99 are to be used, then it is advisable to have [the number of 

resamples] = 999 or more, if practically feasible.”  Today, such numbers take only seconds, and 

it is practically feasible to use much larger numbers of resamples.  In bootES we have 

implemented a default of 2000 resamples, but users may change this number as described in the 

options section below. 

Comparison With Other Software 

To our knowledge, bootES is the only software that implements bootstrap CIs for all of 

the effect sizes and data structures described below without requiring users to write specialized 

code.  BootES makes use of the bootstrapping implementations in the boot() package, which was 

originally written for S-Plus by Canty (see Canty, 2002), and was later ported to R by Ripley 

(Canty & Ripley, 2012).  The boot() package is extremely flexible in that it can perform 

bootstrap resampling for any user-defined function that is written for a particular data structure.  

Thus, boot() is not constrained to the statistics or data structures described below.  However, 

beyond the simplest cases, writing appropriate functions for use with boot() is not trivial.  The 

advantage of using bootES is that the effect-size functions are built-in for the types of data 

structures commonly used by social scientists.  BootES contains optional arguments to control 

those built-in functions, but in typical applications bootES keeps the number of user-specified 

options to a minimum by making use of the structure of the data to help select the appropriate 
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effect size function. 

Bootstrapping methods are becoming more widely available, and all of the major 

commercial statistical programs provide their own scripting languages, which allow users to 

write their own functions and programs.  Thus, users who know those scripting languages could 

write programs to perform any of the computations described below.  However, no commercial 

software offers the breadth of bootES’s built-in effect-size measures and their bootstrap CIs.  

SYSTAT (version 13), JMP Pro (version 10), and the bootstrapping add-on module for IBM-SPSS 

(version 20) allow users to compute bootstrap CIs for the summary statistics and parameter 

estimates computed by many of their procedures.  SAS (version 9) provides a customizable 

bootstrapping macro, but the user needs to know how to program in the SAS macro language.  

Stata (version 12) has a bootstrap command that allows the user to find bootstrap CIs for user-

defined functions of the saved results of existing commands.  Resampling Stats (version 4) offers 

Microsoft Excel and Minitab add-ins that compute bootstrap CIs for user-defined functions.  

Users already familiar with a commercial program might find that its bootstrapping capability 

meets their needs.  If not, bootES offers “one stop shopping” in a free package. 

Example Data 

To illustrate each type of analysis below we will use the example data shown in Table 1. 

(This is a toy data set for illustration purposes; we do not mean to encourage the use of such 

small sample sizes.)  A text file containing these data is provided with the bootES package, and 

can be imported using the command shown in Appendix 1.  Users without access to the data file 

may enter the data in a spreadsheet, and save it as a comma-separated-value (csv) file; once the 

csv file exists it can be imported into R in the normal manner as described in Appendix 1.  

(Readers who are new to R may wish to read Appendix 1 before continuing to the next section.)  

In R the imported data will be contained in an object called a data frame, and the data frame 

must be given a name by the user.  In the import command described in Appendix 1 we called 

our example data frame “myData,” and we used that name throughout our examples.   
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Table 1 

Example Data, Contained in the Data Frame “myData.” 

Gender Condition Dosage Meas1 Meas2 Meas3 
female A 30 212 399 264 
female A 30 290 284 372 
female A 30 310 113 169 
female A 30 133 353 513 
female A 30 387 357 571 
female B 60 365 203 388 
female B 60 198 262 414 
female C 120 192 100 331 
female C 120 215 297 382 
female C 120 154 339 439 
male A 30 148 232 201 
male A 30 322 300 128 
male A 30 249 463 427 
male B 60 135 44 342 
male B 60 217 271 376 
male B 60 243 252 318 
male C 120 424 294 456 
male C 120 337 184 296 
male C 120 387 407 259 
male C 120 481 125 130 

 

To illustrate the use of units of measurement below, let’s pretend that Dosage is 

measured in milligrams and that the three dependent measures (“Meas1,” “Meas2,” and 

“Meas3”) are task completion times in seconds. 

CIs for Means, and General Options 

BootES provides a variety of options that allow the user to customize the type of CI and 

output.  In this section we illustrate some of these options with CIs on means.  In most instances 

users can simply omit these options and use the default values.  As in the R console, all R 

commands and output are shown below in Monaco font. 

CIs on Means 

When a single variable name (a single column of numbers) is given as an argument, 

bootES will find the mean and 95% bootstrap BCa CI for that variable.  Suppose, for example, 

that we wish to find the CI for the grand mean of measure 1 (“Meas1”) in myData.  This column 

can be picked out using standard R notation, in this instance, “myData$Meas1” (see Appendix 1 
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for an explanation of this notation).  To execute a command in R, simply type (or paste and edit) 

the command after the ‘>’ prompt in the R console, and press return.  The mean can be found 

with the built-in R command: 

> mean( myData$Meas1 ) 
[1] 269.95 

To find the CI for this mean, one way to write the bootES command is 

> bootES( data = myData$Meas1 ) 

We can also omit the “data=” part, so long as the data name appears in the first argument to 

bootES.  We do this in all of the example commands below.  Thus, a simpler command is 

> bootES( myData$Meas1 ) 

Executing this command results in output like the following.  

95.00% bca Confidence Interval, 2000 replicates 
Stat         CI (Low)     CI (High)    bias        SE           
269.950      228.716      315.787      0.028       21.918       

The mean of measure 1 is 269.95 s, with a 95% CI from 228.72 s to 315.79 s.  These values can 

be copied from R and pasted into, say, the results section of a manuscript.  The bias, 0.028 s, is 

the difference between the mean of the resamples and the mean of the original sample.  The “SE” 

is the standard error, that is, the standard deviation of the resampled means. 

Above, we said “output like the following” because bootstrap resampling involves taking 

repeated random samples of one’s data, so these intervals will be slightly different each time.  

Readers who wish to replicate our numbers in this article exactly may do so by executing the 

command set.seed(1) immediately before each use of the bootES function.  This command re-

sets the seed of R’s random number generator. 

General Options 

Number of resamples.  As discussed above, by default bootES resamples the data 2000 

times.  This can be changed using the option “R =,” followed by the desired number of 

resamples.  For example, to find the 95% CI for measure 1 based on 5000 resamples, the 

command would be 
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> bootES( myData$Meas1, R = 5000 ) 
 
95.00% bca Confidence Interval, 5000 replicates 
Stat         CI (Low)     CI (High)    bias        SE           
269.950      229.800      317.284      0.522       22.106       

The difference between these estimates and those for “R = 2000” were small in this instance.  

The difference in computing time was also negligible (on a 2.93 GHz computer, 2000 

replications took 0.065 s and 5000 replications took 0.147 s). 

Confidence level.  The default confidence level for CIs in bootES is 95%.  This level can 

be changed using the “ci.conf” option.  For example, to find the 99% CI for the mean of measure 

1, use 

> bootES( myData$Meas1, ci.conf = 0.99 ) 
 
99.00% bca Confidence Interval, 2000 replicates 
Stat         CI (Low)     CI (High)    bias        SE           
269.950      215.225      333.321      0.028       21.918       

As expected, this CI is wider than the 95% CI above. 

CI method.  As discussed above, bootES uses by default the BCa method for computing 

bootstrap CIs, which has been shown to have excellent coverage in a wide range of applications.  

We recommend that readers use this method unless there is reason a priori to think another 

method would be superior for a particular data set.  In such a case, the other methods offered by 

the R boot package (Canty & Ripley, 2012) are also available as options: “basic,” percentile 

(“perc”), normal approximation (“norm”), and studentized (“stud”).  (Note that the studentized 

method requires specification of bootstrap variances as an argument; see the boot.ci help page in 

R for more information on that option.)  These methods are described in Davison and Hinkley 

(1997, Chapter 5).  (The option “none” is also available if one wishes to generate plots of 

resampled values without computing CIs.) 

To illustrate, if one wished to use the normal approximation method to find the CI for the 

mean of measure 1, set the option “ci.type” to “norm”: 

> bootES(myData$Meas1, ci.type = "norm") 
 
95.00% norm Confidence Interval, 2000 replicates 
Stat         CI (Low)     CI (High)    bias        SE           
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269.950      226.963      312.881      0.028       21.918       

Plots.  Behind the scenes, the boot() function creates an object that contains the 

resampled statistics along with plotting information.  As with boot(), bootES users may save this 

object under some arbitrary name, for example, myBoots = bootES(…), and then extract the 

resampled statistics or pass this object by name as an argument to the plot function to generate a 

histogram and Normal quantile-quantile plot of the resampled statistic.  Alternatively, in bootES 

one can easily generate these plots using the option “plot = TRUE.”  

> bootES( myData$Meas1, plot = TRUE ) 

The numerical output will be the same as in our first example above, but the desired plots will be 

generated in a graphics window.  The plots for this example are shown in Figure 1 and indicate 

that the resampled means are approximately normally distributed. 

Between-Subjects (Group) Effect Sizes 

In many instances, effects are defined across group means.  Because subject is typically a 

 
Figure 1. For 2000 resampled means of example measure 1 (labeled “t*” by default), the left 

panel shows the histogram, and the right panel shows the Normal quantile-quantile plot. 
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random factor, resampling methods must randomly resample subjects within groups, while 

respecting the number of subjects in each group in the original sample.  This properly simulates 

the uncertainty in the estimate of each group mean, and it is the resulting unweighted resampled 

means that bootES uses to estimate an effect size between groups.  Thus, bootES provides 

unweighted-means effect sizes, which are appropriate for most scientific questions (Howell & 

McConaughy, 1982). 

Between-Subjects: Unstandardized Effect-Size Measures 

An unstandardized effect size measure is one that expresses the size of an effect in units 

of measurement, typically the original units of measurement in the research.  For example, a 

study that measures response times in milliseconds might report the size of the observed effects 

in milliseconds.  These effect sizes are useful primarily when the original units are meaningful 

and readily interpretable by readers. 

Contrasts.  A contrast, also called a comparison of means (Maxwell & Delaney, 2004), 

is a linearly weighted combination of means, defined for a sample as 

  
C = !" j

M j : !" j
= 0     , 1 

where the Mj are the sample estimates of the population group means µj.  Each mean is 

multiplied by its corresponding contrast weight, λj, and the sum of the λj must be zero.  The sign 

of C indicates whether the pattern in the group means is in the direction predicted by the contrast 

weights (+) or in the opposite direction (–). 

Two groups.  For a difference between two means, the λs in Equation 1 are simply +1 

and –1.  In bootES the user must specify the groups that are involved in the contrast using the 

“contrast” option, wrapped within R’s c() function (concatenation).  Each group label is followed 

by an equal sign and its contrast weight.  For example, to find the difference between the means 
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of females and males one could use the option “contrast = c(female = 1, male = -1).”  As a 

convenience, when only two groups are involved in the contrast, the user may omit the contrast 

weights but add single or double quotes: for example, “contrast = c(‘female’, ‘male’).” 

We must also tell bootES which column contains the “data” (the dependent, or outcome 

variable) and which column contains the grouping variable (the independent, or categorical 

predictor variable).  These are specified using the ‘data.col’ and ‘group.col’ options, 

respectively.  For example, suppose we wish to find CIs for the mean difference in measure 1 

between females and males in the example data set.  In this case the group.col is “Gender” and 

the data.col is “Meas1.”  Pulling these options together, we use the following command: 

> bootES( myData, data.col = "Meas1", group.col = "Gender",  
  contrast = c("female", "male") ) 
 
User-specified lambdas: (female, male) 
Scaled lambdas: (-1, 1) 
95.00% bca Confidence Interval, 2000 replicates 
Stat        CI (Low)     CI (High)    bias        SE           
48.700      -37.223      132.422      -0.477      43.223       

Note that the command was lengthy, and wrapped onto a second line.  That makes no difference 

in R; all input prior to pressing the return key will be interpreted as part of the same command. 

The means of the groups can be found easily using a built-in R command, by(), which 

finds a statistic “by” groups.  The first argument is the data column, the second argument is the 

grouping column, and the third argument is the desired statistic: 

> by( myData$Meas1, myData$Gender, mean ) 
myData$Gender: female 
[1] 245.6 
----------------------------------------  
myData$Gender: male 
[1] 294.3 

Three or more groups.  All else equal, a contrast increases with an increasing 

correspondence between the pattern in the contrast weights and the pattern in the means.  

Consequently, a raw contrast C may serve as a measure of effect size.  However, the magnitude 

of C is also affected by the arbitrary scaling of the choice of weights, so the choice of weights 

can affect the reader’s ability to interpret the contrast as an effect size.  Therefore, when 
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reporting an unstandardized contrast as an effect-size measure, it is important to choose contrast 

weights such that they preserve the original units of measurement (or at least some non-arbitrary 

unit).  This can be accomplished by making the positive contrast weights sum to +1 and the 

negative contrast weights sum to –1.  The contrast can then be interpreted as a difference 

between two weighted means (i.e., weighted by contrast weights), and it will express the effect in 

the original units of measurement of the dependent variable. 

To illustrate, suppose we wish to assess the increase in measure 1 in the example data —

task completion time measured in seconds — as a linear function of dosage condition.  The three 

conditions, A, B, and C, in the example data correspond to dosages of 30 mg, 60 mg, and 120 

mg, respectively.  To find linear contrast weights we can simply subtract the mean of these 

dosages from each dosage.  The mean is (30 + 60 + 120)/3 = 70, so the corresponding contrast 

weights are 30 – 70 = –40, 60 – 70 = –10, and 120 – 70 = 50, respectively.  Using the labels for 

the variable Condition within the data frame, our contrast specification becomes “contrast = c(A 

= –40, B = –10, C = 50).”  These contrast weights capture the same effect as would, say, the 

weights (–4, –1, 5), but the former will lead to an unstandardized effect size ten times as large as 

the latter for the same data.  To express C in the original units of measure 1, the weights must be 

scaled to (–0.8, –0.2, 1).  This scaling of contrast weights is done by default in bootES, for any 

weights provided by the user.  Both the original and scaled lambda weights are reported in the 

output: 

> bootES(myData, data.col = "Meas1", group.col = "Condition",  
  contrast = c(A=-40, B=-10, C=50)) 
 
User-specified lambdas: (-40, -10, 50) 
Scaled lambdas: (-0.8, -0.2, 1) 
95.00% bca Confidence Interval, 2000 replicates 
Stat        CI (Low)     CI (High)    bias        SE           
61.437      -39.026      157.701      0.188       51.047       

The value of C, 61.44 s, is in the original units of measure 1.  Weight scaling can be over-ridden 

by the user with the option ‘scale.weights = FALSE.’ 

Slopes.  A special case of a linear contrast is one that gives the slope of the relationship 
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between the outcome variable and the predictor variable.  A slope expresses the linear 

relationship as numbers of unit change in the outcome variable per one unit change in the 

predictor variable, in the original units of measurement.  For example, if one’s hypothesis 

predicted a linear increase in mean task completion time (in seconds) as drug dosage increased 

across three drug dosage conditions (e.g., 30 mg, 60 mg, and 120 mg), one might wish to express 

the effect, with its associated CI, as a slope with units s/mg.  This can be accomplished by 

scaling the contrast weights appropriately.  One obtains each scaled weight by demeaning the 

values, X, on the predictor variable (e.g., dosages), and then dividing each by the sum-of-squares 

(SS) of those values: 

  

! j =
X j " X

X j " X( )2

#
          ,   2 

This is done automatically in bootES when the “slope.levels” option is used instead of the 

“contrast” option. 

To illustrate, suppose one’s grouping variable is non-numeric (e.g., conditions A, B, and 

C), but one knows their corresponding numeric values (e.g., 30, 60, and 120 mg).  As with 

contrasts more generally, the mapping of group labels and numeric values (A = 30, B = 60, C = 

120) can be given in the ‘slope.levels’ argument, and the appropriate slope weights will be used: 

> bootES( myData, data.col="Meas1", group.col="Condition",  
  slope.levels = c(A=30, B=60, C=120) ) 
 
User-specified lambdas: (-0.00952, -0.00238, 0.0119) 
Scaled lambdas: (-0.00952, -0.00238, 0.0119) 
95.00% bca Confidence Interval, 2000 replicates 
Stat        CI (Low)    CI (High)   bias        SE           
0.731       -0.465      1.877       0.002       0.608        

The observed slope is 0.73 s/mg, with a 95% CI from –0.47 s/mg to 1.88 s/mg. 
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Alternatively, when the grouping variable designated by ‘group.col’ is numeric, those 

numeric values will be used as levels of the predictor variable.  For example, the 30, 60, and 120 

mg dosage levels are contained in the “Dosage” column of myData, which can be specified in 

the slope.levels option: 

> bootES( myData, data.col="Meas1", slope.levels = "Dosage" ) 

The output would be identical to that in the previous example. 

Between-Subjects:  Standardized Effect-Size Measures 

It is often preferable to report standardized, or “scale-free” measures of effect size.  Such 

unitless measures can be meaningful to readers even when they have little intuitive 

understanding of the effects in the original units.  Standardized measures also allow easier 

assessment and combination in meta-analyses (Glass, 1976; Hedges & Olkin, 1985).  We have 

implemented several standardized effect-size measures in bootES. 

Cohen’s d-type effect-size measures.  One approach to standardizing an effect size is to 

express the effect in standard deviation units.  Typically this means dividing the unstandardized 

effect size by an estimate of the population standard deviation.  Such effect sizes, including the 

four in this section, are variations on what is typically called “Cohen’s d,” after Cohen (1969). 

Cohen’s δ  and d.  Cohen (1969) was concerned primarily with using guesses about 

population effect sizes to estimate the power of significance tests, and with estimating sample 

size requirements for achieving desired levels of power.  Consequently, he defined his effect-size 

measures in terms of population parameters.  For the difference between two means, the effect 

size is found by  

 
! =

µA " µB

#
          ,   3 
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where µA and µB are population means of groups A and B expressed in original units, and σ is 

the population standard deviation common to the two groups (see Cohen, 1969, p. 18, Eq. 2.2.1).  

That is, σ is   (SSA + SSB ) / (nA + nB ) , where SSj is the sum of squares and nj is the number of 

sample values for group j.  (Although Cohen, 1969, denoted this quantity with the Latin d, we 

use the Greek δ because Equation 3 represents a population parameter.)  For a single mean 

effect, expressed as a standardized difference between that mean and some theoretical value 

(perhaps zero), the definition is obtained by substituting the theoretical value for µB, and using 

  ! = SS / n  in Equation 3. 

The population parameter form in Equation 3 is useful for those who wish to use Cohen’s 

(1969) power tables, or when one wishes to view the size of the effect relative to the standard 

deviation of the sample itself (Rosenthal & Rosnow, 1991, p. 302).  We make this variation 

available in bootES with the option ‘effect.type = “cohens.d.sigma”.’  For example, for the 

difference between the measure 1 means for males and females in the example data set, 

> bootES( myData, data.col = "Meas1", group.col = "Gender",  
  contrast=c(female=-1, male=1), effect.type = "cohens.d.sigma" ) 
 
User-specified lambdas: (-1, 1) 
Scaled lambdas: (-1, 1) 
95.00% bca Confidence Interval, 2000 replicates 
Stat        CI (Low)    CI (High)   bias        SE           
0.501       -0.517      1.509       0.039       0.511        

The gender difference in original units of measure 1 was 48.7 s.  Is that large or small?  The 

standardized effect size tells us that the difference is about half a standard deviation (0.50σ), 

with a 95% bootstrap CI from –0.52σ to 1.51σ. 

Outside the context of a priori power calculations, such as when one is estimating the 

standardized effect size from data, it is usually more appropriate to divide the unstandardized 

effect size by an unbiased estimate of the population standard deviation.  An unbiased estimate is 

obtained from the pooled standard deviation of scores (denoted s, S, or  !̂ ), and requires use of 

the familiar “n – 1” formulas for computing the standard deviation.  For two groups, the pooled 

estimate of the standard deviation is   s = (SSA + SSB ) / (nA + nB ! 2) .  Thus, the difference 
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between two group means in standard deviation units is given by 

 
d =

M A ! M B

s
          ,   4 

where MA and MB are the sample means of the two groups.  For a single mean effect, expressed 

as a standardized difference from some theoretical value, the definition is obtained by 

substituting the theoretical value for MB, and using   s = SS / (n!1)  in Equation 4.  We will 

return to single means as effect sizes in the section on within-subjects effects below. 

The quantity in Equation 4 is often called “Cohen’s d,” d′, or simply d (Cumming & 

Finch, 2001; Hunter & Schmidt, 1990; Killeen, 2005), despite its having a different denominator 

than Cohen’s (1969) original “d,” in Equation 3.  This varied usage is understandable, since even 

Cohen implied that values of d used for power calculations sometimes would be based on 

estimates of σ (e.g., Cohen, 1969, p. 39). 

We have made the effect size in Equation 4 available in bootES using the option 

“cohens.d.”  Returning to our previous example of the effect size for the difference in the mean 

of measure 1 between females and males, the value of Cohen’s d and its CI can be found by 

> bootES( myData, data.col = "Meas1", group.col = "Gender",  
  contrast = c("female", "male"), effect.type = "cohens.d" ) 
 
User-specified lambdas: (female, male) 
Scaled lambdas: (-1, 1) 
95.00% bca Confidence Interval, 2000 replicates 
Stat        CI (Low)    CI (High)   bias        SE           
0.475       -0.491      1.432       0.037       0.485        

Hedges’s g.  Although Equation 4 uses an unbiased estimate of σ, d is not an unbiased 

estimate of δ, but tends to be a little too large (Hedges, 1981).  Hedges (1981) derived an 

unbiased estimator of δ, which he denoted  g
U  (Hedges, 1981, Eq. 7), apparently named after 

Glass (1976).  This has come to be known as “Hedges’s g,” and it is defined as  
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where d is defined as in Equation 4, df is the degrees of freedom used to compute s in Equation 

4, and Γ is the Euler gamma function.  The correction factor — the fraction on the right side of 

Equation 5 — is always less than 1, but approaches 1 rapidly as df increases. 

Returning to our previous example of the effect size for the difference in the mean of 

measure 1 between females and males, the value of Hedges’s g and its CI can be found by 

> bootES( myData, data.col = "Meas1", group.col = "Gender",  
  contrast = c("female", "male"), effect.type = "hedges.g" ) 
 
User-specified lambdas: (female, male) 
Scaled lambdas: (-1, 1) 
95.00% bca Confidence Interval, 2000 replicates 
Stat        CI (Low)    CI (High)   bias        SE           
0.455       -0.470      1.371       0.035       0.464        

As expected, the value of Hedges’s g is slightly smaller than the value of Cohen’s d found above. 

When the goal is to estimate δ from empirical data, Hedges’s g is preferable to the 

traditional Cohen’s d.  On the basis of his Monte Carlo simulations, Kelley (2005) recommended 

using Hedges’s g (which he denoted du) in conjunction with BCa intervals.   

Glass’s Δ .  In some contexts it may be desirable to express an effect across groups 

relative to the standard deviation of scores in a single group, such as a control group (Glass, 

1976; McGaw & Glass, 1980; Smith & Glass, 1977).  This is sometimes called Glass’s Δ 

(McGaw & Glass, 1980; Rosenthal, 1984).  We provide this option for Equations 3, 4, and 5, 

with the optional argument ‘glass.control = "[group label]".’  Typically, one will want to use 

Hedges’s unbiased version in Equation 5, as illustrated here: 
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> bootES(myData, data.col = "Meas1", group.col = "Gender", contrast =  
  c("female","male"), effect.type="hedges.g", glass.control="female") 
 
User-specified lambdas: (female, male) 
Scaled lambdas: (-1, 1) 
95.00% bca Confidence Interval, 2000 replicates 
Stat        CI (Low)    CI (High)   bias        SE           
0.510       -0.461      1.788       0.103       0.632        

Robust d.  The foregoing variations on Cohen’s d are not robust statistics, in that small 

changes in the population distribution can strongly affect their values (Wilcox & Keselman, 

2003).  Robust statistics are preferred, for example, when one is trying to control Type I error in 

the context of null hypothesis significance testing.  Algina, Keselman, and Penfield (“akp”) 

(2005) proposed a robust version of Cohen’s d, which they denoted dR.  They replaced the means 

in Equation 4 with 20% trimmed means (i.e., the mean of the middle 60% of the data), and 

replaced s with a 20% Winsorized standard deviation, which is scaled (divided by 0.642) to 

ensure that it is a consistent estimator of σ when the distribution is normal.  This robust variation 

is available in bootES using the option ‘effect.type = “akp.robust.d”.’  Here is its value and CI 

for the difference in the mean of measure 1 between females and males: 

> bootES( myData, data.col = "Meas1", group.col = "Gender",  
  contrast = c("female", "male"), effect.type = "akp.robust.d" ) 
 
User-specified lambdas: (female, male) 
Scaled lambdas: (-1, 1) 
95.00% bca Confidence Interval, 2000 replicates 
Stat        CI (Low)    CI (High)   bias        SE           
0.549       -0.464      2.037       0.001       0.707        

Algina et al. (2005, 2006) showed that bootstrap CIs provided excellent coverage for dR with as 

few as 20 subjects per group, even with strongly nonnormal distributions and δR as large as 1.40. 

Note that the interpretation of dR is different than that of d.  A 20% trimmed sample mean 

estimates a 20% trimmed population mean — the mean of the middle 60% of the population — 

whereas an untrimmed sample mean estimates the population mean of the whole distribution 

(Wilcox & Keselman, 2003).  Consequently, dR measures the difference between the middle 60 

percents of the groups, in units of the standard deviation of the middle 60 percents.  Whether this 

is the effect size of interest depends on one’s scientific question. 
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Standardized contrasts.  Although variants of d are most often used to express 

differences between means, or between means and theoretical values, they can equally well be 

used to express the standardized magnitudes of other types of contrasts (Steiger, 2004; Steiger & 

Fouladi, 1997).  The expression for a standardized contrast is a generalization of Equation 4, 

 
dC =

! j" M j

s   
        ,
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where the λs express a quantitative hypothesis and sum to zero, as in Equation 1.  The sign of dC 

indicates whether the pattern in the group means is in the direction predicted by the contrast 

weights or in the opposite direction. 

A subtle issues arises in this context: To create a scale-free effect size, expressed in 

standard deviation units, the contrast (the numerator) must be computed with weights that 

preserve the original units, as shown in Equation 2, so that the numerator and denominator in 

Equation 6 will have the same units and those units can be cancelled.  This scaling of contrast 

weights is performed by default in bootES wherever there are more than two groups involved in 

the contrast and one of the d-type effect sizes is requested. 

For a d-type standardized effect size for a contrast, as for a difference between two 

means, one would typically want to include the bias correction in Equation 5.  To illustrate both 

weight scaling and bias correction, here is Hedges’s g for the example from the previous section 

on contrasts: 

> bootES(myData, data.col="Meas1", group.col="Condition",  
  contrast=c(A = -40, B = -10, C = 50), effect.type = "hedges.g") 
 
User-specified lambdas: (-40, -10, 50) 
Scaled lambdas: (-0.8, -0.2, 1) 
95.00% bca Confidence Interval, 2000 replicates 
Stat        CI (Low)    CI (High)   bias        SE           
0.572       -0.553      1.715       0.067       0.572        
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Note that the contrast weights, –40, –10, and +50, were rescaled to –0.8, –0.2, and +1.  The value 

of g = 0.57 is an unbiased estimate of δ for the contrast, and indicates that the contrast — in this 

case a linear trend — was a little over a half standard deviation in magnitude in the direction 

predicted by the contrast weights. 

Pearson’s r.  An alternative to Cohen’s d-type effect sizes for standardizing an effect is 

the Pearson correlation coefficient, r (Pearson, 1896).  In the context of assessing mean effects, 

mean differences, and contrasts more generally, r can be interpreted as the partial correlation 

between the contrast weights and scores on the outcome variable, after having removed the 

group differences other than those associated with the contrast (Rosnow, Rosenthal, & Rubin, 

2000).  One benefit of expressing an effect size for a contrast as r is that it scales the effect to 

have an absolute magnitude between 0 and 1, with the sign indicating whether the trend in the 

group differences was in the direction predicted by the contrast weights or in the opposite 

direction. 

For computing r for a contrast directly from the data, bootES uses the following equation: 

  

rcontrast =
C

C 2 + SSp

! j
2

nj
"

          ,  
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where SSp is the pooled within-group sum of squares, the nj are the numbers of cases within each 

group, and C and λ are defined as in Equation 1.  (This is algebraically equivalent to computing r 

from a t-test of a contrast as illustrated in Rosnow, Rosenthal, & Rubin, 2000.)  For a single 

mean effect, M, Equation 7 simplifies to r = 
  
M / M 2 + SSp / n . 

Note that the scale of the contrast weights does not affect r, because the weights appear in 

both the numerator and denominator of Equation 7.  Thus, any convenient weights that capture 
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one’s hypothesis and sum to zero may be used (although bootES scales them anyway).  Here is 

the CI on the effect size r for the contrast from the previous section, which is generated using the 

‘effect.type = “r”’ option: 

> bootES( myData, data.col="Meas1", group.col="Condition",  
  contrast = c(A = -40, B = -10, C = 50), effect.type = "r" ) 
 
User-specified lambdas: (-40, -10, 50) 
Scaled lambdas: (-0.8, -0.2, 1) 
95.00% bca Confidence Interval, 2000 replicates 
Stat        CI (Low)    CI (High)   bias        SE           
0.289       -0.311      0.673       0.002       0.242        

Factorial Between-Subjects Designs 

The most transparent and least problematic way to analyze factorial designs is to treat the 

cells in such a design as though they were levels in a single-factor design (i.e., as in a one-way 

ANOVA).  This approach can be used with bootES to test contrasts that are defined over any 

combination of cells in the factorial design.  All contrasts of interest, their standardized effect 

sizes as defined above, and their CIs, can be computed just as they were illustrated in the 

foregoing section on between-subjects effects. 

To accomplish this, when the levels of multiple independent variables are contained in 

different columns in a data frame those levels must be collapsed into a single column.  It is easy 

to collapse manually two or more independent variables into a single variable using R’s paste() 

command, which takes the condition labels from the existing columns, joins them together 

separated by a character that we specify, and stores the new cell labels in a new column.  To 

illustrate, the data set in Table 1 has columns for Gender (two groups) and Condition (three 

groups).  To paste their labels together into a new column with six groups, called, say, 

“GenderByCond”, we can use 

myData$GenderByCond = paste( myData$Gender, myData$Condition, sep = "-" ) 

Type “myData” at the prompt to see the new column in the R console.  All contrasts that would 

be available in a factorial analysis can now be computed on this new, single factor, using the 

bootES methods described above. 
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However, as the number of levels or factors increases, specifying contrast weights at the 

level of the smallest cell in the factorial design can become cumbersome.  For example, to 

compare the means of females and males in the factorial design Gender x Condition, using the 

methods described above, we could write 

> bootES( myData, data.col="Meas1", group.col="GenderByCond",  
  contrast = c("female-A"=-1, "female-B"=-1, "female-C"=-1, "male-A"=1,  
  "male-B"=1, "male-C"=1) ) 
 
User-specified lambdas: (-1, -1, -1, 1, 1, 1) 
Scaled lambdas: (-0.333, -0.333, -0.333, 0.333, 0.333, 0.333) 
95.00% bca Confidence Interval, 2000 replicates 
Stat        CI (Low)     CI (High)   bias        SE           
36.783      -18.893      96.193      -1.320      30.188       

(Note that the value for the gender difference, 36.78 s, is different that the value in the earlier 

example because here it is computed across the unweighted means of the six conditions.)  To 

avoid these redundant contrast weight specifications, as a convenience we have included an 

option in bootES that allows a blocking column to be specified separately from the grouping 

column over which the contrast weights are defined.  When blocking on only one other factor, 

such as blocking on Condition in myData, this factor can be specified in the block.col option: 

> bootES( myData, data.col="Meas1", group.col="Gender",  
  contrast = c('female', 'male'), block.col = "Condition" ) 
 
User-specified lambdas: (female, male) 
Scaled lambdas: (-0.333, -0.333, -0.333, 0.333, 0.333, 0.333) 
95.00% bca Confidence Interval, 2000 replicates 
Stat        CI (Low)     CI (High)   bias        SE           
36.783      -18.893      96.193      -1.320      30.188       

When the design has three or more factors, use the paste function to create a new column that 

defines the smallest cells, as we did above to create GenderByCond, and use that column as the 

blocking column. 

Using the column that defines the smallest cells as the grouping column, such as 

GenderByCond, allows us to define contrasts over any combination of simple, main, and 

interactions effects.  For example, the difference between the mean of females in condition A 

and the means of males in conditions B and C can be found by 
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> bootES(myData, data.col = "Meas1", group.col = "GenderByCond",  
  contrast = c("female-A" = -2, "male-B" = 1, "male-C" = 1) ) 
 
User-specified lambdas: (-2, 1, 1) 
Scaled lambdas: (-1, 0.5, 0.5) 
95.00% bca Confidence Interval, 2000 replicates 
Stat        CI (Low)     CI (High)    bias        SE           
36.392      -43.382      125.890      -2.162      42.825       

Some readers may think it a disadvantage of this approach to factorial analysis that one 

does not get all of the standard main effects and interactions automatically, as one typically does 

in factorial ANOVA.  However, factorial ANOVA also has disadvantages: (1) many effects in 

the output of a factorial ANOVA are not of interest, but their inclusion raises Type I error rates; 

(2) not all effects of interest are automatically included in factorial output, but must be tested 

with contrasts; and (3) effects in factorial outputs are often “omnibus” (multi-df) effects that 

must be followed by post hoc contrasts anyway.  A discussion of these problems can be found in 

Rosenthal and Rosnow (1991, pp. 467-469, 486). 

Within-Subjects (Repeated Measures) Effect Sizes 

CIs for within-subjects effects must be computed in two steps.  First, outside bootES, find 

a single number for each subject that defines the effect for that subject.  In some instances these 

might be effects that were directly measured by the measuring instrument.  In other instances the 

effects will need to be calculated from repeated measurements obtained from each subject.  

These include mean differences (also called “difference scores,” “change scores,” or 

“improvement scores”), or more generally, within-subjects contrast scores (Rosenthal, Rosnow, 

& Rubin, 2000, pp. 128-130).  These scores must be in a single column in the data frame, and the 

mean of this column provides the mean unstandardized effect size across subjects.  Second, use 

bootES to find the desired effect size measure and its bootstrap CI across subjects, just as one 

would do for completely between-subjects effects. 

Within Subjects: Unstandardized Effect Size Measures 

To illustrate, suppose we wish to find the CI for the mean change from measure 1 to 

measure 3 in the example data.  The first step is to create a new column of numbers containing 
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the difference score for each subject.  Simply affix any new (unused) variable name, such as 

“M3minusM1,” after the data frame name and dollar sign, and set it equal to the difference: 

> myData$M3minusM1 = myData$Meas3 - myData$Meas1 

R finds the difference for each subject and stores it in the new column in the data frame.  For 

example, the first subject in Table 1 has a difference score of 264 – 212 = 52.  (Type “myData” 

and press return in the R console to view the current data frame, including the new column.)  We 

can now find the mean difference score with its 95% CI in the same manner we did in the section 

on the CI for a single mean: 

> bootES(myData$M3minusM1) 
 
95.00% bca Confidence Interval, 2000 replicates 
Stat        CI (Low)     CI (High)    bias        SE           
68.850      -11.736      136.231      0.258       37.926       

This method can be generalized to any within-subjects contrast.  First, a contrast score is 

generated for each subject using Equation 1, but with the subject’s score in each condition 

replacing the means (Mj) in that equation.  For example, if our hypothesized effect was that the 

mean of measures 1 and 2 would be less than measure 3, we could use the weights –0.5, –0.5, 

and +1 for each subject’s scores on measure 1, measure 2, and measure 3, respectively.  Affix a 

new variable name, such as “M3vM1M2,” after the data frame name and dollar sign, and set it 

equal to the contrast: 

> myData$M3vM1M2 = (-0.5)*myData$Meas1 + (-0.5)*myData$Meas2 +  
  (1)*myData$Meas3 

This command creates a new column of contrast scores that indicate the size of this 

unstandardized effect for each subject.  For example, the first subject in Table 1 has a contrast 

score of (–0.5)*212 + (–0.5)*399 + (1)*264 = –41.5.  The mean of this column of contrast scores 

gives the mean effect predicted by the contrast across subjects, and its CI can be found in the 

same way as for the mean of any column of numbers: 

> bootES( myData$M3vM1M2 ) 
 
95.00% bca Confidence Interval, 2000 replicates 
Stat        CI (Low)    CI (High)    bias        SE           
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71.850      8.235       124.563      0.212       29.196       

Because within-subjects contrast scores are computed outside and prior to using bootES, the 

scale.levels option in bootES will have no effect on them.  If one wishes to scale the weights to 

preserve the original units for an unstandardized contrast one must choose appropriate weights 

oneself, such that the negative weights sum to –1 and the positive weights sum to +1, while 

preserving their relative sizes.  (The weights –0.5, –0.5, and +1 did this in the example above.)  

Alternatively, one may use standardized effect sizes, as described next. 

Within Subjects: Standardized Effect Size Measures 

To find the standardized effect size for a mean difference or contrast within subjects, 

create the column of contrast scores using the method described in the previous section.  

(Because the effect size will be standardized, the scaling of contrast scores will make no 

difference so any convenient weights that capture one’s hypothesis and sum to zero may be 

used.)  Then specify the desired type of standardized effect size using the effect.type option in 

bootES.  In this context bootES will use a single-mean version of the standardized effect sizes 

defined above (i.e., Equation 3, 4, 7, or robust d).  For example, for the contrast in the previous 

section comparing the mean of measure 3 to the means of measures 1 and 2, one might wish to 

express the effect predicted by the contrast in standard deviation units using Hedges’s g: 

> bootES(myData$M3vM1M2, effect.type = "hedges.g") 
 
95.00% bca Confidence Interval, 2000 replicates 
Stat        CI (Low)    CI (High)   bias        SE           
0.518       -0.006      1.095       0.049       0.287        

The standardized mean contrast score, 0.52, indicates that the mean within-subject difference 

between measure 3 and the means of measures 1 and 2 was about half a standard deviation in 

magnitude (because subjects is a random factor, the relevant standard deviation, and the one used 

by bootES, is the standard deviation of the contrast scores). 

Mixed Factorial Designs 

Often, as in the example data shown in Table 1, an experimental design contains both 

between-subjects factors (e.g., Gender and Condition) and within-subjects factors (e.g., Measures 
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1, 2, and 3).  For such mixed-effects designs, bootES requires a two-step approach.  First, the 

within-subjects (repeated measures) factors are converted into a single column of contrast scores 

that correspond to the predicted within-subjects effects, as described in the section on within-

subjects effects.  Second, this column of contrast scores is then treated as the dependent variable 

in a completely between-subjects contrast analysis, as described in the section on between-

subjects effects.  These between-subjects contrasts examine how the within-subjects effects vary 

across groups.  The various effect size measures are defined exactly as they were for between-

subjects-only effects above. 

To illustrate, in a previous example we created a new column in myData, “M3minusM1,” 

containing the within-subject change scores from Meas1 to Meas3.  It turns out that the mean 

change was large for females, and nearly zero for males.  To find the CI for the between-subject 

gender difference in the size of this within-subject change, we use the column of change scores 

as the data column, block on Condition, and compute the contrast for the gender difference. 

> bootES( myData, data.col = "M3minusM1", group.col = "Gender",  
  contrast = c(female=1, male=-1), block.col = "Condition") 
 
User-specified lambdas: (1, -1) 
Scaled lambdas: (0.333, 0.333, 0.333, -0.333, -0.333, -0.333) 
95.00% bca Confidence Interval, 2000 replicates 
Stat         CI (Low)    CI (High)    bias        SE           
130.189      34.718      239.810      -0.584      52.944       

Females’ change scores were 130.2 s greater than those for males, on average, with a 95% BCa 

bootstrap CI from 34.7 s to 239.8 s. 

In summary, in mixed factorial designs we recommend that users reduce the repeated 

measures to non-repeated measures by computing within-subjects contrast scores, and then 

reduce the factorial between-subjects design to a single between-subjects factor, on which 

between-subjects contrasts and their CIs can be estimated in bootES.  We believe that 

widespread adoption of this approach would result in a general improvement in data-analytic 

practice with factorial designs, and lead to better scientific inferences than does the automatic 

generation of the full output from mixed factorial ANOVAs. 
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Correlations 

BootES provides a convenient way of finding bootstrap CIs for a simple correlation 

between two variables, and for between-group differences in correlations.  When two columns of 

data are supplied to bootES with no grouping variable, by default bootES computes the 

correlation between those two columns and finds the BCa bootstrap CI.  Two columns can be 

picked out of a data frame using R’s built-in notation (see Appendix 1).  Here is the correlation 

between measures 2 and 3 in the example data, using R’s built-in correlation function: 

> cor( myData[c("Meas2","Meas3")] ) 
          Meas2     Meas3 
Meas2 1.0000000 0.3891825 
Meas3 0.3891825 1.0000000 

To find the bootstrap CI for this correlation, simply submit the two columns to bootES: 

> bootES( myData[c("Meas2","Meas3")] ) 
 
95.00% bca Confidence Interval, 2000 replicates 
Stat        CI (Low)    CI (High)   bias        SE           
0.389       -0.007      0.704       -0.002      0.181        

When a third column with exactly two group labels is submitted as a grouping variable, 

bootES computes the difference between the two groups in the size of the correlation.  For 

example, we can find the gender difference in the correlation between measures 2 and 3: 

> bootES(myData[c("Meas2","Meas3","Gender")], group.col = "Gender") 
 
95.00% bca Confidence Interval, 2000 replicates 
Stat        CI (Low)    CI (High)   bias        SE           
0.259       -0.840      0.958       -0.021      0.440        

Partial correlations, differences between correlated correlations, and other multivariate estimates 

are not currently implemented in bootES. 

Conclusion 

BootES is a free package that offers a combination of features that we do not believe 

currently exists in any other single piece of software.  Most importantly, it computes bootstrap 

CIs for both standardized and unstandardized effect sizes for contrasts, and performs scaling of 

unstandardized effect sizes to retain the original units of measurement.  By making use of the 
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structure of the data to help choose the appropriate built-in effect size function, bootES is able to 

do most of this with a single command and a small number of option specifications.  Among its 

disadvantages are that bootES is command-line driven, and requires the use of R, which is not 

particularly user-friendly.  However, by providing copy-paste-edit examples of command lines in 

this article, and an overview of R in Appendix 1, we hope we have mitigated these 

disadvantages. 

Our goals in creating bootES were to help researchers fulfill the APA’s requirement of 

“complete reporting of … estimates of appropriate effect sizes and confidence intervals” (APA, 

2009, p. 33), and, thereby, to embolden more researchers to begin the transition away from null 

hypothesis significance testing (Harlow, Mulaik, & Steiger, 1997).  When the population 

distribution is believed to be normal, perhaps based on bootstrap data such as that shown in 

Figure 1, we recommend that researchers report exact CIs for one of the effect sizes available in 

MBESS (Kelley & Keke, 2012).  When the population distribution is known not to be normal, or 

unknown, which is the more common situation, we recommend that researchers use bootES to 

report BCa bootstrap CIs for one of the effect sizes described above. 
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Appendix 1 

In this Appendix we provide readers with (just) enough information on the basics of R to 

enable them to conduct the analyses described in this article.  Official R documentation can be 

found at http://cran.r-project.org/manuals.html.  Venables and Smith (2012), available at that 

web site, is an authoritative and accessible introduction.  A large number of user-provided guides 

can be found at http://cran.r-project.org/other-docs.html. 

Downloading and Installing R 

R may be downloaded free of charge for Windows, Mac OS, and Linux operating 

systems from http://cran.r-project.org/mirrors.html.  After selecting a mirror site close to one’s 

region, simple click on the link for the precompiled binary distribution appropriate for one’s 

operating system.  Follow the instructions for downloading and installation. 

Commands in R 

R is an interpreted programming language.  The standard R package comes with a 

rudimentary graphic user-interface with several menu options, but we recommend using 

commands for cross-platform consistency.  To execute a command, simply type the command 

after the ‘>’ prompt in the R Console, and press return or enter.  R interprets the command, and if 

it knows how, it carries out the command.  When commands exceed the width of the R console 

they will wrap onto additional lines, but this will make no difference in how R interprets the 

command; all input prior to pressing the return key will be interpreted as part of the same 

command. 

To minimize typing, commands can be copied and pasted from a text file and then edited, 

or imported from a command file.  All of the commands in this article can be found in file 

“commands.txt,” which is bundled with the bootES package and can be obtained by typing 

> system.file("commands.txt", package="bootES") 

This command will put the file in the /bootES/inst directory on the users’ computer. 

Installing and Loading the bootES Package 
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In addition to the R program itself, to use the functions in this article one must also 

download and install bootES.  At the R command line, simply type the following command on a 

computer with an internet connection: 

> install.packages("bootES") 

(If you forget the command, you can also perform the download from the Packages & 

Data/Package Installer menu item.)  Installation need only be done once on each computer.   

However, every time you restart R and wish to use the bootES library of functions, you 

will need to load the package.  To do so, you can use the Packages & Data/Package Manager 

menu item, or simply type  

> library(bootES) 

Our bootES package depends on another R package called “boot.”  That package must also be 

installed and loaded.  This will happen automatically when you install and load bootES. 

Importing Data 

The data-entry and editing capabilities of current versions of R are quite limited.  We 

recommend entering data into spreadsheet software, or other statistical software that one is 

already using, and then saving the data file as a comma-separated values (.csv) file.  The data 

should have a typical row and column format, where the rows are separate subjects or cases and 

the columns are variables.  It is best to save the column (variable) names as the first row in this 

file, if possible, because adding the names in R later would require additional, tedious steps. 

For a file with the row-column structure described above, data may be imported into R 

with the command 

> myData = read.csv(file=file.choose(), strip.white=TRUE, header=TRUE) 

This will store the data in R in an object named “myData.”  This object is of a type called a data 

frame in R.  It has the same row and column format as did the .csv file.  The data in the data 

frame can be viewed in the console by typing the name of the data frame and pressing return. 

The read.csv command above included two optional arguments: “strip.white=TRUE” 

omits white space at the beginnings and ends of character data cells; “header=TRUE” indicates 
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that the first row in the data file is a list of column (variable) names.  If the data file does not 

have variable names in the first row, then either set this to FALSE or simply omit the argument. 

Note that an error message “incomplete final line found by readTableHeader” is sometimes 

generated with the read.csv command because Microsoft Excel and some other programs do not 

put end-of-line markers on the last lines of .csv or .txt files.  This message can be ignored. 

It is best not to put quotes around column names or character entries in the data file.  If 

the data file comes with quotes, use a text editor to search for and remove them.  Missing data 

can be indicated by a special symbol, or better, by simply having white space or nothing between 

commas in the position of the empty cell. 

Example Data 

The data file that is used to illustrate bootES in this article, “example.csv,” is provided 

automatically with the bootES package, and can be imported using the following command: 

> myData = read.csv(file=system.file("example.csv", package="bootES"), 
  strip.white=TRUE, header=TRUE) 

Exporting Data 

The R command for exporting data frames is write.table(), but we recommend the 

convenience version write.csv(), which writes comma-separated value files.  This command 

takes as arguments the name of the data frame (e.g., myData) and the name of the new data file 

(e.g., file = “myNewData.csv”).  To avoid storing default row numbers as row names in the data 

file, include the argument “row.names = FALSE.”  The complete command is: 

> write.csv(myData, file="myNewData.csv", row.names=FALSE) 

This will save the data file in the default directory on your hard disk. 

Saving Commands and Results 

The entire R session in the console can be saved to a text file by choosing “Save as…” 

from the File menu.  This has the advantage of saving results along with the commands that 

generated them.  Individual results may be copied from this file, or directly from the R console, 

and pasted into other programs. 



BOOTSTRAP CONFIDENCE INTERVALS 42 

Selecting Variables (Columns) 

Data frames often contain multiple columns.  There are many ways to select subsets of 

columns in R, and here we describe the one that we believe is the most transparent to new users.  

Named columns within a data frame can be specified by attaching the column name as a suffix to 

the name of the data frame, following a $ sign, as in dataFrame$columnName.  For example, if 

we wish to pick out the column “Meas1” from the data frame “myData,” the proper designation 

would be “myData$Meas1.”  This usage was illustrated above when we found the mean and CI 

for a single variable. 

Note that in bootES some analyses require that one specify a data column, and in some 

instances, a grouping column.  In those analyses, the name of the data frame is given as the first 

argument to bootES, and must be omitted from the column names.  So we use 

> bootES(myData, data.col = "Meas1" ... 

and not 

> bootES(myData, data.col = myData$Meas1 ... 

Finally, some analyses in R and bootES require that we pick out multiple columns at once 

from our data frame.  An easy way to accomplish this is to concatenate the variable names using 

R’s concatenation function, c(), and then wrap this in square brackets following the data frame 

name.  For example, if we wanted to pick out both columns “Meas1” and “Meas2” from the data 

frame myData, the command would look like this: 

> myData[ c("Meas1","Meas2") ] 

This notation was used above to pick out columns in the correlation examples. 

Selecting Data Subsets (Rows) 

Sometimes one might want to perform an analysis on a subset of rows (subjects or cases), 

such as some particular group.  To pick out subsets of rows from a data frame, a transparent 

approach is to use R’s subset() command.  For example, to select only those rows in myData 

corresponding to female subjects in condition A, we can use the command 

> female.A = subset(myData, Gender=="female" & Condition=="A")  
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This creates a new data frame, which we arbitrarily named “female.A,” containing only those 

cases.  (Note that the dot, or period, in a name in R, as in “female.A”, is used merely as a means 

of clarifying the label; in this context it is not an operation.)  Any analyses on the data frame 

female.A will return results only for that group of subjects. 

In the subset() function, multiple necessary conditions are combined with an ampersand 

(denoting and), whereas alternative sufficient conditions are combined using a vertical bar ‘|’ 

(denoting or). Equality is denoted with a double equal sign (==), and “not equal” is denoted “!=”.  

Inequalities are denoted with their usual symbols (>, <, >=, and <=). 



BOOTSTRAP CONFIDENCE INTERVALS 44 

 

Appendix 2 

Bias-Corrected-and-Accelerated (BCa) Intervals 

As noted above, simple “percentile” bootstrap CIs suffer from two sources of inaccuracy.  

First, many sample statistics are biased estimators of their corresponding population parameters, 

such that the expected value of  !̂  does not equal θ.  We can estimate bias using the distribution 

of the statistic from our bootstrap resamples (Efron, 1987; Efron & Tibshirani, 1993).  Find the 

proportion, p, of the  !̂
* s that are less than  !̂ :   p = count(!̂ * < !̂ ) / R , where R is the number of 

resamples.  Then find the value, z, that is greater than 100p% of the normal distribution; that is, 

find the inverse of a standard normal cumulative distribution function (NCDF–1) for quantile p: 

  z = NCDF !1( p)           .   8 

Thus, z measures the discrepancy between  !̂  and the median of the distribution of  !̂
* , and serves 

as a measure of median bias (Efron & Tibshirani, 1993, p. 186).  When  !̂  is equal to the median 

of the  !̂
* , then z equals 0, indicating no bias.  If  !̂  were, say, greater than only 40% of the  !̂

* , 

then z would be approximately –0.25, indicating a negative bias. 

The second source of inaccuracy in percentile bootstrap CIs is that the standard error of 

an estimate of  !̂  may not be independent of the value of θ.  We can estimate this dependency 

from the rate of change, called the acceleration, of  !̂  with respect to change in θ.  Acceleration, 

a, may be estimated from the distribution of jackknife values of the statistic.  To find a jackknife 

value, we omit one data point from the original sample and recompute the statistic.  Let X–i be 

the data omitting the ith data point; then   !̂" i  is the statistic of interest calculated for the 

remaining N – 1 data points.  We repeat this for each data point in the original data, giving us N 

different values of   !̂" i . Denote the mean of the N jackknife values ! .  The acceleration can now 
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be calculated from the following equation (Efron & Tibshirani, 1993, p. 186): 

a =
! !!̂!i( )3!

6 ! !!̂!i( )!
2"

#$
%
&'

3/2             .   9 

The bias in  !̂ , as estimated in Equation 8, and the dependency between the standard error 

and θ, as estimated in Equation 9, can now be used to adjust the percentile cutoffs in the 

distribution of  !̂
*  to create more accurate bootstrap CIs than those from unadjusted percentiles.  

Keeping with standard notation in psychology, for a CI with a P% confidence level, let α = 1 – 

P/100.  That is, α is the combined proportions of the lower and upper tails of the distribution that 

are not covered by the CI.  For example, for a 95% CI, P is 95, so α is 0.05.  (In contrast, Efron 

and Tibshirani, 1993, defined α as the area in a single tail of the distribution, such that 2α = 1 – 

P/100.)  Let Z(α/2) be the value on a standard normal distribution that cuts off 100α/2% of the 

lower tail of the distribution.  For example, for α = 0.05, Z(.025) = –1.96. 

In Efron’s (1987) procedure for finding the BCa percentiles, we adjust these Z values by 

adding to them the bias estimate, z, and dividing by a term that contains the acceleration 

estimate, a.  This gives a new value on a standard normal distribution that can be converted back 

into a percentile using the NCDF.  The lower percentile, qlow, is found from 

  
qlow = NCDF z + z + Z(! / 2)

1+ a z + Z(! / 2)"# $%

&
'
(

)(

*
+
(

,(
          .   10 
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Likewise, Z(1–α/2) is the value on a standard normal distribution that cuts off 100α/2% of the 

upper tail of the distribution.  For example, for α = 0.05, Z(.975) = 1.96.  Thus, the upper 

percentile, qhi, is found from 

  
qhi = NCDF z + z + Z(1!" / 2)

1+ a z + Z(1!" / 2)#$ %&

'
(
)

*)

+
,
)

-)
          .   11 

Finally, these percentiles, qlow and qhi, are used to pick out the corresponding values of  !̂
*  in the 

rank ordered resampled values of the statistic.  Note that when bias is zero (z = 0) and the 

standard error is constant (a = 0), qlow = α/2 and qhi = 1 – α/2, so these formulas yield the same 

values as the simple percentile method. 


