The normalized wave function for a one dimensional particle in the box is given by:
![[Graphics:Images/ID_Box_QMInt_gr_3.gif]](Images/ID_Box_QMInt_gr_3.gif)
Some needed substitutions
![[Graphics:Images/ID_Box_QMInt_gr_4.gif]](Images/ID_Box_QMInt_gr_4.gif)
Check the normalization
![[Graphics:Images/ID_Box_QMInt_gr_5.gif]](Images/ID_Box_QMInt_gr_5.gif)
![[Graphics:Images/ID_Box_QMInt_gr_6.gif]](Images/ID_Box_QMInt_gr_6.gif)
Calculate the average position, < >
![[Graphics:Images/ID_Box_QMInt_gr_9.gif]](Images/ID_Box_QMInt_gr_9.gif)
![[Graphics:Images/ID_Box_QMInt_gr_10.gif]](Images/ID_Box_QMInt_gr_10.gif)
The particle on the average wil be found in the middle of the box
Calculate the average of the square of the position , <>
![[Graphics:Images/ID_Box_QMInt_gr_13.gif]](Images/ID_Box_QMInt_gr_13.gif)
![[Graphics:Images/ID_Box_QMInt_gr_14.gif]](Images/ID_Box_QMInt_gr_14.gif)
Now we calculate the average momentum, <
>
![[Graphics:Images/ID_Box_QMInt_gr_17.gif]](Images/ID_Box_QMInt_gr_17.gif)
![[Graphics:Images/ID_Box_QMInt_gr_18.gif]](Images/ID_Box_QMInt_gr_18.gif)
The average momentum is zero. This makes sense since standing waves are a combination of a wave moving to the right and a wave moving to the left
Finally we calculate the average square of the momentum, < >
![[Graphics:Images/ID_Box_QMInt_gr_21.gif]](Images/ID_Box_QMInt_gr_21.gif)
![[Graphics:Images/ID_Box_QMInt_gr_22.gif]](Images/ID_Box_QMInt_gr_22.gif)
With the previous calculations we can find the variances
![[Graphics:Images/ID_Box_QMInt_gr_24.gif]](Images/ID_Box_QMInt_gr_24.gif)
![[Graphics:Images/ID_Box_QMInt_gr_25.gif]](Images/ID_Box_QMInt_gr_25.gif)
![[Graphics:Images/ID_Box_QMInt_gr_27.gif]](Images/ID_Box_QMInt_gr_27.gif)
![[Graphics:Images/ID_Box_QMInt_gr_28.gif]](Images/ID_Box_QMInt_gr_28.gif)
From the variances we can find the standard deviations
![[Graphics:Images/ID_Box_QMInt_gr_30.gif]](Images/ID_Box_QMInt_gr_30.gif)
Now we can check the Uncertainty Principle
![[Graphics:Images/ID_Box_QMInt_gr_31.gif]](Images/ID_Box_QMInt_gr_31.gif)
Rewriting the final result and its minimum value, n = 1.
![[Graphics:Images/ID_Box_QMInt_gr_33.gif]](Images/ID_Box_QMInt_gr_33.gif)
![[Graphics:Images/ID_Box_QMInt_gr_34.gif]](Images/ID_Box_QMInt_gr_34.gif)
the values is greater than 0.5000 hb.
Therefore, the Schrodinger Equation includes the Uncertainty Principal