Analytical Results
From the linear analysis one can find that the critical curve is given by:
 ![mk[go_] := (go + 1)/go](../HTMLFiles/MATH5_TUT1_910.gif) 
 ![ck[go_] := (go + 1)/(go - 1)](../HTMLFiles/MATH5_TUT1_911.gif) 
Options[Plot]
We call two packages
 Needs["Graphics`FilledPlot`"]
Needs["Graphics`InequalityGraphics`"]
We define text and text properties
 t = "Times";
opty[n_] := Sequence[FontFamily->t, FontWeight->"Bold",FontSize->n, FontColor->RGBColor[1,1,0]]
optb[n_] := Sequence[FontFamily->t, FontWeight->"Bold",FontSize->n, FontColor->RGBColor[0,0,0]]
Using the Block command, we plot
 Block[{$DisplayFunction=Identity},
p1 = FilledPlot[{mk[x],1},{x,0,10},PlotRange->{0,5},FrameLabel->{"go","k"},Frame->True,RotateLabel->False,Fills->{RGBColor[1,0,0],RGBColor[1,0,0]}];
p2 = InequalityPlot[{ck[x]<y<5},{x,1,10},{y,0,5},PlotRange->{0,5},FrameLabel->{"go","k"},Frame->True,RotateLabel->False,Fills->{RGBColor[0,0,1]}];
    ]
 figMLVM = Show[{p1,p2,Graphics[Line[{{1,0},{1,5}}]]},PlotRange->{{0,10},{0,5}},Epilog->{
Text[StyleForm["Oscillations",opty[14]],{4,4}],
Text[StyleForm["Unphysical     g < 0",opty[14]],{4,0.5}],
Text[StyleForm["r< 0",opty[14]],{0.1,1.5},{-1,-1}],
Text[StyleForm["SS",optb[14]],{1.,3}]}];
 ![[Graphics:../HTMLFiles/MATH5_TUT1_913.gif]](../HTMLFiles/MATH5_TUT1_913.gif) 
Any point in the red region represent a totally unphysical situation in the world of negative concentrations. But any point in the blue region yields oscillations. Any pointin the white region and between the line and red region yields ONLY stable steady states
 ![mgo[k_] := 1/(k - 1)](../HTMLFiles/MATH5_TUT1_914.gif) 
 ![cgo[k_] := (k + 1)/(k - 1)](../HTMLFiles/MATH5_TUT1_915.gif) 
 Block[{$DisplayFunction=Identity},
p1 = FilledPlot[{mgo[x]},{x,1,5},PlotRange->{0,5},FrameLabel->{"k","go"},Frame->True,RotateLabel->False,
Fills->{RGBColor[1,0,0],RGBColor[1,0,0]}];
p1b = FilledPlot[{10},{x,0,1},PlotRange->{0,5},FrameLabel->{"k","go"},Frame->True,RotateLabel->False,
Fills->{RGBColor[1,0,0],RGBColor[1,0,0]}];
p2 = InequalityPlot[{cgo[x]<y<10},{x,1,5},{y,0,10},PlotRange->{0,5},FrameLabel->{"k","go"},Frame->True,RotateLabel->False,Fills->{RGBColor[0,0,1]}];
]
 figMLVM2 = Show[{p1,p1b,p2,Graphics[Line[{{0,1},{5,1}}]],Graphics[Line[{{1,0},{1,10}}]]},PlotRange->{{0,5},{0,10}},Epilog->{
Text[StyleForm["Oscillations",opty[14]],{4,4}],
Text[StyleForm["r < 0",opty[14]],{1.5,0.5}],
Text[StyleForm["g< 0",opty[14]],{0.1,1.5},{-1,-1}],
Text[StyleForm["SS",optb[14]],{2.,1.5}]}];
 ![[Graphics:../HTMLFiles/MATH5_TUT1_916.gif]](../HTMLFiles/MATH5_TUT1_916.gif) 
Any point in the red region represent a totally unphysical situation in the world of negative concentrations. Any pointin the white region and between the line and red region yields ONLY stable steady states
| Created by Mathematica (September 7, 2006) |  |