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 20 

Abstract 21 

The Rf- method is a powerful graphical approach for estimating finite strain of 22 

deformed elliptical objects, but one that students commonly find difficult to understand. 23 

We developed a program that allows users to explore visually how deforming a set of 24 

elliptical objects appears on Rf- plots. A user creates or loads the ellipses and then 25 

deforms them by simple shear, pure shear, or rigid rotation. As the ratio of the long to 26 

short axis of the ellipses (Rf) and long-axis orientations () change in one window, the 27 

Rf- plot continuously and instantaneously updates in another. Users can save snapshots 28 

of the deformed elliptical objects and the Rf- plots to record graphical experiments. The 29 

program provides both Rf vs.  and polar ln(Rf) vs. 2() plots. The user can „undeform‟ 30 

ellipses quickly and easily, making it possible to inspect the „original‟ shapes and 31 

orientations of objects, and to evaluate the plausibility of the determined strain values. 32 

Users can export information about the pebbles‟ shape and orientation to spreadsheets for 33 

rigorous statistical analysis. This program is written in Java and so can run on virtually 34 

any operating system. Both the source code and the application will be freely available 35 

for academic purposes. 36 
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 39 

1. Introduction 40 

Deformed ellipsoidal objects, such as pebbles and oolites, are common in rocks, 41 

and they offer an intuitive, visually appealing approach for teaching fundamental strain 42 

concepts in structural geology. Students can easily grasp the effect of strain on an initially 43 

spherical object and, with practice, can visualize the fate of initially ellipsoidal markers. 44 

Furthermore, the study of deformed pebble conglomerate and oolitic limestone provides 45 

an excellent opportunity for students to gain experience in data acquisition and error 46 

analysis. They must also confront a host of important problems that plague all attempts to 47 

quantify strain, such as ductility contrast between marker object and matrix, initial shape 48 

and distribution of marker objects, area or volume change during deformation, and the 49 



relationship between two-dimensional strain measured in planar sections with the three-50 

dimensional strain experienced by rocks.  51 

 Structural geologists commonly exploit elliptical objects in their research to 52 

quantify strain in naturally deformed rocks, understand the development of deformation 53 

fabrics, and examine strain gradients in folds and fault zones. The importance of this 54 

approach to strain measurement has inspired numerous studies to overcome its inherent 55 

limitations, or at least to understand them thoroughly. Through numerical experiments, 56 

Lisle (1979) tested several methods for averaging shape and orientation data to determine 57 

the most accurate for estimating the strain ellipse, and concluded that the harmonic mean 58 

was the most reliable. Hossack (1968) and Treagus and Treagus (2002) also discussed in 59 

detail the problems of determining strain from pebble shapes in a conglomerate.  60 

Ramsay (1967) derived the equations of the Rf- method for quantifying finite 61 

strain, and Dunnet (1969) showed how the Rf- method can be used as a practical tool 62 

for strain determination from elliptical objects. As discussed in detail below, the Rf- 63 

method assumes an initially random distribution of ellipse long-axis orientations, and a 64 

range of initial long to short axial ratios, Ri (Table 1).  Ramsay and Huber (1983) 65 

presented an especially useful, and well-illustrated, discussion of the Rf- method 66 

making the technique more accessible to researchers and students. Lisle (1985) offered a 67 

very complete and useful treatment of the method. Our contribution is to provide a 68 

program that links deformation of elliptical objects with Rf- plots, giving students a 69 

visual explanation of how the method works, and offering students and researchers a tool 70 

to quickly estimate strain from outcrops and samples. 71 

Our program provides both the familiar Cartesian Rf- plot and the innovative 72 

polar plot of Elliott (1970) for comparison with the ellipse population. Elliott‟s (1970) 73 

approach employed a novel “shape factor grid” and a polar plot of ln(Rf) vs. 2() that 74 

should, in theory, allow assessment of the initial distribution of long axes of elliptical 75 

objects, and estimate the strain. The greatest limitation of this approach is the apparent 76 

complexity of the distribution of undeformed elliptical objects (Boulter, 1976; Paterson 77 

and Yu, 1994). Yamaji (2005) developed an inverse method to overcome some of these 78 

limitations for the special case of a bivariate normal distribution of sedimentary particles. 79 

Another limitation to Elliott‟s (1970) approach, and a possible explanation for why the 80 



method has been underutilized, is the significant difficulty most users have with 81 

visualizing the effect of strain on elliptical objects in polar plots. Our program helps 82 

overcome the latter limitation by showing how Cartesian and polar Rf- plots change 83 

during deformation.  84 

Lisle‟s (1985) approach to testing the assumption of an initially random 85 

distribution of pebble long axes was to create a set of “marker deformation grids” using 86 

Cartesian Rf- plots, and to examine the distribution pattern of deformed ellipses. Sets of 87 

pebbles that were consistent with the assumption should show a symmetrical pattern 88 

about both the harmonic mean of Rf and the vector mean of . DePaor (1988) developed 89 

another novel and useful approach to the Rf- method that uses a hyperbolic net and 90 

symmetry principles to estimate strain from ellipsoids, but our program does not include 91 

hyperbolic plots. 92 

Several commercially available drafting programs allow users to create a set of 93 

elliptical objects and to simulate deformation with tools that linearly transform the 94 

ellipses by pure shear, simple shear, and rigid rotation. These programs are very useful 95 

for teaching purposes. Also, several commercial programs are available that permit 96 

researcher to determine strain with the Rf- method using axial ratio and orientation data. 97 

Some of these programs incorporate statistical methods to assess the validity of the 98 

assumption of initial random distribution of long axis orientations. We have not 99 

duplicated the capabilities of these programs. Instead, we developed a relatively simple 100 

program that focuses on visualizing the relationship between strained elliptical objects 101 

and plots of axial ratio vs. orientation. Our program is complimentary to the existing 102 

software because it is straightforward to examine deformed objects with our program and 103 

then, to export information about the ellipses to data files for use in these programs. 104 

 Our goal was to create a simple and easy-to-learn interactive computer program 105 

that allows the user to simulate deformation of elliptical objects by pure shear, simple 106 

shear, and rigid rotation. Throughout the linear transformations, Cartesian or polar Rf- 107 

plots are continuously and instantaneously updated. The advantage of this program is that 108 

the color coding and tracking options make it possible to visualize the distribution and 109 

paths of points representing elliptical objects on Rf- plots. This is especially valuable 110 

for the polar plots of ln(Rf) vs. 2(), and it helps highlight the potential of this neglected 111 



approach. We also show here how the program is used to introduce students to the Rf- 112 

method, determine strain in natural samples, and simulate „retro-deformation‟ of samples 113 

to recover the original shapes and orientation of the pebbles for critical evaluation of the 114 

method. This program is written in Java, and so can run on virtually any operating 115 

system. Both the source code and the finished application will be freely available for 116 

academic purposes. 117 

 118 

2. Summary of the Program 119 

 The program contains a large display window on the left and a display control 120 

window on the right (Fig. 1A). Ellipses are created in the display area by dragging with 121 

the mouse in editing mode. The user can import a 700 by 700 pixel photograph or other 122 

image as a background, and trace elliptical objects from it (Fig. 1B). Alternatively, text 123 

files containing information about the position, shape, and orientation of elliptical objects 124 

can be loaded. An Excel workbook that serves as a template for creating such files is 125 

included with the program. Several buttons control the appearance of the ellipses and the 126 

scale and position of the display (Table 2). All pebbles in the display area are plotted in 127 

the small Rf vs.  plot in the display control window as they are created (Fig. 1A). 128 

 The user can choose deformation by simple shear, pure shear, or rigid rotation 129 

with the radio buttons (Fig. 1). Once a radio button is chosen, deformation can be 130 

precisely specified or accomplished by click-and-drag with the mouse in the display area. 131 

During simulated deformation, the Rf vs.  plot is continuously and instantaneously 132 

updated as ellipses change shape and orientation in the display area. A larger and more 133 

versatile Rf vs.  plot appears when the user clicks the Big Cartesian Plot button. The 134 

Big Polar Plot button summons a polar plot of ln(Rf) vs. 2(), which tracks deformation 135 

of elliptical objects in a different and very useful manner (Elliott, 1970), as discussed 136 

below. The program allows the user to save an image of both types of plots. 137 

 Original and deformed displays can be saved for further study. Data files 138 

containing information about the original or deformed shape, orientation, and position, of 139 

pebbles can be created for statistical analysis or use with commercially available 140 

programs. Snapshots of the display can be captured, and a sequence of such images, 141 

combined with snapshots of the Rf- plots, can be used to create animations of 142 



deforming pebbles and the corresponding changes in the graphical representation of the 143 

deformation. 144 

 The program applies the specified linear transformation to simulate deformation 145 

of ellipses in the display area. The program then uses a simple numerical analysis process 146 

to determine the axial ratio of the transformed objects. For each ellipse, it gets a list of 147 

points along the circumference, and then calculates the distance from the center to each 148 

of those points. As it steps through those calculations, it tracks the longest and shortest of 149 

those distances, thus finding the long and short axes. To maximize the accuracy and 150 

efficiency of the axial ratio approximation, the program uses a number of circumference 151 

points close to the number of pixels used to create the ellipse. The analytical equations 152 

for  and Rf derived by Ramsay (1967, p. 205-209) and summarized by Lisle (1985, p. 3) 153 

can be used to track deforming ellipses, particularly when their shapes and orientations 154 

are loaded from a file (e.g. Fig 1A). However, when ellipses are traced from an image 155 

(e.g. Fig. 1B), a numerical routine similar to the one we use is needed to determine the 156 

initial shape and orientations of objects. The routine we use mimics what geologist 157 

actually do when they measure naturally deformed elliptical objects.  158 

 159 

3. Demonstrating the Rf- Method to Students 160 

Figure 2A shows five color-coded groups of ellipses from the display screen with 161 

initial axial ratios equal to 1.2, 1.6, 2.0, 2.4, and 2.8. The long axes of the ellipses are 162 

initially oriented in 10
o
 increments. We created this group of ellipses as a teaching aid 163 

using the Excel Workbook distributed with the program. It is designed to simulate a 164 

group of pebbles with an initially random distribution of long axis orientations, and a 165 

limited range of axial ratios. Figure 2B shows the Rf vs.  plot for this „undeformed‟ 166 

array of ellipses. The points are colored the same as the corresponding ellipses, to 167 

facilitate tracking, and they are distributed over the entire range of  values. Two ellipses 168 

with axial ratios of 2.8, whose long axes are oriented horizontally and vertically are 169 

selected in 2A, and they appear as larger points in 2B to highlight the paths of these 170 

objects during simulated deformation. Also selected in 2A is the large gray unit circle to 171 

help track the value of the “strain ellipse” in the Rf- plots. Figure 2C shows the polar 172 

plot of ln(Rf) vs. 2() for the undeformed array of ellipses. The points are also colored 173 



the same as the ellipses in 2A, and the points form a radial distribution around the origin 174 

of the polar plot with more elliptical objects farther from the origin.  175 

The ellipses undergo a simulated vertical, pure shear, shortening with strain ratio 176 

of 1.4 (Fig. 2D). The Rf- plot (Fig. 2E) shows that the ellipses with initial axial ratios of 177 

1.2 now form a closed loop. The polar plot of ln(Rf) vs. 2() (Fig. 2F) shows that the 178 

points corresponding to the group of ellipses with an initial axial ratio of 1.2 now lie 179 

entirely to the right of the origin. This pattern reflects the fact that the strain (Rs = 1.4) 180 

was great enough to transform an initial ellipse (Ri = 1.2), whose long axis was 181 

perpendicular to the stretching direction, to a circular object (R = 1), and then into an 182 

ellipse whose long axis is parallel to the stretching direction (Rf = 1.17). In contrast, 183 

groups of ellipses with initial axial ratios greater than that of the strain ellipse form open 184 

configurations in the Rf- plot over the entire range of  values. This pattern reflects the 185 

fact that elliptical objects, whose axial ratios are greater than the strain ellipse ratio, and 186 

whose long axes are perpendicular to the stretching direction, become less elliptical, but 187 

their long axes do not change orientation during pure shear.  188 

Continuing this example, the shortening is increased to a strain ratio of 3:1 (Fig. 189 

2G). At Rs = 3, points representing all the ellipses form concentric closed loops on the Rf 190 

vs.  plot (fig. 2H) because Rs is greater than the maximum initial ellipticity of 2.8. On 191 

the polar plot (fig. 2I), all of the points lie to the right of the origin and together they form 192 

a noticeably elliptical, rather than a circular, distribution.  193 

The images in Figure 2 illustrate, in an effective but static fashion, the 194 

relationship between the strained elliptical shapes and the Cartesian and polar Rf- plots. 195 

Using the program is much more compelling, however, because the Rf- plots are 196 

continuously and instantaneously updated as the ellipses are strained in the display 197 

window, and the user can rapidly perform experiments that visually relate strain to the 198 

plots.  199 

To find the Rf and  values for individual objects, the user clicks on the point in 200 

the plots and reads the coordinates at the bottom of the window. Thus, it is easy to 201 

determine the values of Rfmax and Rfmin on the Rf vs.  plots (Figs. 2E and H), and to use 202 

them to calculate the maximum initial ellipticity, Rimax, and the axial ratio of the strain 203 

ellipse, Rs, using the equations provided by Ramsay and Huber (1983, p. 77). For 204 



example in Figure 2E, Rfmax = 4.1 and Rfmin = 2.1. Using these values in the equations for 205 

an open configuration: 206 

 207 

 (Rfmax * Rfmin)
1/2

 = Rimax, and     (1) 208 

 209 

(Rfmax / Rfmin)
1/2

 = Rs,      (2) 210 

 211 

yields Rimax = 2.9, and Rs = 1.4. In Figure 2H the maximum and minimum values are 8.9 212 

and 1.1. Using these values in the equations for a closed configuration: 213 

 214 

 (Rfmax / Rfmin)
1/2

 = Rimax,      (3) 215 

 216 

(Rfmax * Rfmin)
1/2

 = Rs,      (4) 217 

 218 

gives Rimax = 2.8, and Rs = 3.1. Both of these results are in good agreement with the 219 

actual values for strain and maximum initial ellipticity used in the simulations.  220 

For an initially random distribution of elliptical objects, finding the Rs value in the 221 

polar plots is very straightforward. It requires locating the „center‟ of the points 222 

representing all of the ellipses and clicking on it. The ln(Rf) and the Rf values are given at 223 

the bottom of the plot. One of the inherent challenges of the Rf- method is identifying 224 

outliers (pebbles with unusually large initial ellipticity values) on the Rf vs.  plot so that 225 

they may be neglected when finding the values of Rfmax and Rfmin to use in Eqs. (1) and 226 

(2) for open configurations or Eqs. (3) and (4) for closed configurations (Ramsay and 227 

Huber, 1983). Using the polar plot circumvents this problem by focusing on the center of 228 

the distribution of points, rather than on the maximum and minimum values. Thus, the 229 

correct identification of outliers is much less critical.  230 

Figures 2E and H help illustrate an important limitation of the Rf -  method. It is 231 

only reliable if the undeformed rock contained a large number of objects that possessed 232 

the greatest initial axial ratio, Rimax, and the long axes of these objects were not 233 

preferentially oriented. Both criteria must be met to create a robust open (Fig. 2E) or 234 

closed (Fig. 2H) configuration for determining Rfmax and Rfmin. If only a limited number 235 



of objects with greatest initial ratio are present, or if the long axes are preferentially 236 

oriented over a limited angular range, the values for Rfmax and Rfmin obtained from 237 

Cartesian Rf -  plots will be based on pebbles with different initial ellipticity (for 238 

example, purple and yellow ellipses in Fig. 2). This situation will produce an inaccurate 239 

strain estimate. Tracking specific points allows the user to see that after deformation, 240 

objects with maximum initial axial ratios (Ri = Rimax), and with long axes parallel to the 241 

maximum extension direction, will have the greatest final axial ratio (Rimax*Rs = Rfmax). 242 

In contrast, objects with maximum initial axial ratios (again, Ri = Rimax), but with long 243 

axes perpendicular to the maximum extension direction will have the minimum final 244 

axial ratio (Rimax/Rs = Rfmin). If the observed values for Rfmax and Rfmin come from unique 245 

outliers, that is to say, pebbles with significantly different initial ratios, Ri, the strain 246 

estimate will not be reliable.  247 

 248 

4. Applying the Rf- Method for Strain Determinations 249 

 Figure 3A shows the program window with a background image of a deformed 250 

quartz pebble conglomerate from the Dalton Formation, located in Dalton, 251 

Massachusetts, USA. The photograph was converted into a 700 by 700 pixel image 252 

before being loaded as a background. The blue ellipses were traced from the deformed 253 

pebbles in the editing mode by clicking and dragging with a mouse. An experienced user 254 

can trace fifty pebbles in approximately five minutes, so it is an efficient method for 255 

determining the axial ratio and long axis orientation of deformed pebbles, compared with 256 

measuring individual pebbles with a ruler and protractor. The ellipses generated by the 257 

program rarely conform to the shape of naturally deformed objects. Thus, using the 258 

program to trace pebbles highlights the important, yet commonly overlooked, fact that 259 

naturally deformed objects are not perfect ellipses. As pebble outlines are traced with a 260 

mouse, the corresponding Rf and  values are plotted in Cartesian (Fig. 3B) and polar 261 

(Fig. 3C) plots.  262 

 After the pebbles are traced, the Rf -  plot (Fig. 3B) can be used to find the 263 

values of Rfmax and Rfmin (as shown in Figures 2E and H). Once these values are obtained, 264 

it is straightforward to calculate the ratio of the strain ellipse, Rs, and the maximum initial 265 



ellipticity, Rimax, using Eqs. (1) and (2) for open configurations, or Eqs. (3) and (4) for 266 

closed configurations.  267 

Another approach, which offers greater insight into the strain state, is to use the 268 

program to find the most likely inverse strain ellipse, and thereby recover the 269 

„undeformed‟ shapes and distribution of the pebbles. This is most easily done in two 270 

steps, and the process takes advantage of the fact that an arbitrary linear transformation 271 

can be expressed as a pure shear (transformation by a diagonal matrix) followed by a 272 

rotation (transformation by an anti-symmetric matrix). These steps are reversed for an 273 

inverse transformation (inverse strain). 274 

Figure 3D shows the pebble outlines after a counter-clockwise rigid rotation of 9
o
, 275 

a value found by trial and error and chosen because it creates a symmetric distribution of 276 

points about the  = 0 axis in the Rf vs.  plot (Fig. 3E), and the 2 = 0 axis in the polar 277 

ln(Rf) vs. 2 plot (Fig. 3F). The second step is to apply horizontal shortening by pure 278 

shear, and create the most dispersed possible distribution of points over the entire range 279 

of  values (Fig. 3H). A dispersed pattern of points, as seen in Figure 3H, simulates an 280 

initially random distribution of long axis orientations. An equivalent approach is to create 281 

a radial distribution of points centered at the origin of the polar plot of ln(Rf) vs. 2 to 282 

simulate an initially random distribution of long axis orientations (Fig. 3I).  283 

The axial ratio of the inverse strain ellipse determined by the inverse graphical 284 

method is 3.7. This strain estimate is similar to the value of Rs = 3.67 as calculated using 285 

Eq. (4) with values of Rfmin = 1.95 and Rfmax = 6.93, as measured from Figure 3B. Likely 286 

outliers were neglected when selecting the Rfmin and Rfmax values. By comparison, field 287 

measurements at the outcrop using a ruler and protractor gave a strain estimate of 3.75 288 

using the standard Rf -  method (Ramsay and Huber, 1983). As expected, the agreement 289 

between the three approaches is excellent. The inverse graphical strain method, however, 290 

has the advantage of allowing visual inspection of the starting configuration of the 291 

pebbles. The value of direct field measurements cannot be overstated, and should always 292 

be the highest priority. However, it is not always possible to measure objects on 293 

inaccessible surfaces in the field, and our program is well suited for working with 294 

photographs of hard-to-reach outcrop surfaces, as well as photographs of slabbed hand 295 

samples and thin sections. 296 



 The graphical approach for finding inverse strain described above is valuable 297 

because the initial shapes of the pebbles, and their spatial distribution, can be easily 298 

portrayed (Fig. 3G).  This functionality makes it possible for researchers and students to 299 

assess quickly and visually the plausibility of strain determinations using the Rf- 300 

method. Furthermore, although the examples presented here assume no area change, the 301 

program can incorporate area change if such data are available. Because the program runs 302 

graphical experiments very quickly, it is also practical to explore the effects of varying 303 

area change if the direction of area loss can be deduced from stylolites or pebble 304 

indentations (Onasch, 1984). 305 

 306 

5. Conclusions 307 

Although we do not provide new insight into the theory behind the Rf- method, 308 

we believe our program advances strain studies for both educational and research 309 

purposes. Our main goal in creating this program was to provide a visual link between 310 

deforming elliptical objects and corresponding Rf- plots, and we endeavored to do this 311 

with an easy-to-learn application so attention can be focused on strain rather than 312 

learning how to use the program. Instructors can use the main display window to 313 

demonstrate fundamental principles of strain, such as the difference between coaxial and 314 

non-coaxial strain, and the relationship between strain and deformation fabric. The 315 

program also allows students to see how deformation of a group of ellipses is manifested 316 

in Rf- plots, and how strain can be estimated from such a population. The digitizing 317 

capabilities of the program make it possible for students to quickly generate Rf- plots 318 

from photographs of deformed conglomerate or oolitic limestone, making it more 319 

practical to assign such problems.  320 

The program generates both the familiar Cartesian Rf- plots and polar plots of 321 

ln(Rf) vs. 2(), as suggested by Elliott (1970). Direct comparison of the two kinds of 322 

plots highlights the advantages and disadvantages of each. Although the polar plots are 323 

somewhat more difficult to relate to the shape and orientation of elliptical objects, the 324 

program demonstrates that the initial array of points representing ellipses is displaced 325 

with only moderate distortion in the ln(Rf) vs. 2() plots (Figs. 2 & 3). Recognition and 326 



elimination of statistical outliers is also much less critical when using polar than 327 

Cartesian plots. 328 

Researchers can use the program to digitize deformed objects from imported 329 

photographs of outcrops, slabbed hand samples, and thin sections. Strain can be 330 

determined directly from the Rf- plots using the standard equations, or by retro-331 

deformation of the ellipses, as described above. The advantage of the latter approach is 332 

that it gives a view of the initial shape and distribution of objects, and thereby permits a 333 

visual assessment of the validity of the strain estimate. The program can model area 334 

change during deformation, and graphical experiments can be performed rapidly, so it is 335 

feasible to explore the effects of area change when evidence for pressure solution exists 336 

(Onasch, 1984). The program does not provide automated strain determinations or testing 337 

of initially random distribution of ellipses. It is easy, however, to export data files with 338 

information about the position, axial ratio, and long axis orientation of ellipses. Such files 339 

can then be used for statistical and graphical analysis to test rigorously strain models, and 340 

the assumptions on which they are based. Data files generated by our program can also be 341 

imported into commercially available programs that perform symmetry and distribution 342 

tests on deformed objects. 343 

 The program, which we call GeoShear, along with a photograph of a deformed 344 

conglomerate, files of synthetic ellipses, and an Excel workbook that serves as a template 345 

for creating new files can be downloaded at: 346 

http://www.williams.edu/Geoscience/facultypages/Paul/currentresearch.html.  347 

 348 
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Figure and Table Captions 382 

 383 

Figure 1. Screen captures of the entire program window. A. Individual ellipses can be 384 

drawn in editing mode with a wide variety of colors. B. Photographs (up to 700 by 700 385 

pixels) of deformed objects, such as these quartz pebbles, are imported in the display 386 

window for tracing ellipses as shown in blue. 387 

 388 

Figure 2. Screen captures of the display window and Cartesian and polar Rf- plots. A. 389 

Undeformed (axial ratio of strain ellipse, Rs = 1) array of color-coded ellipses. B. Plot of 390 

Rf vs.  for the unstrained configuration of ellipses shown in A. C. Polar plot of ln(Rf) 391 

vs. 2 for the unstrained configuration of ellipses shown in A. D. Ellipses shown in A 392 

after vertical shortening by pure shear such that the axial ratio of the strain ellipse, Rs, is 393 

equal to 1.4. E. Plot of Rf vs.  for the ellipses shown in D. F. Polar plot of ln(Rf) vs. 2 394 

for the ellipses shown in D. G. Ellipses shown in A after vertical shortening by pure shear 395 

such that the axial ratio of the strain ellipse, Rs, is equal to 3. H. Plot of Rf vs.  for the 396 

ellipses shown in G. I. Polar plot of ln(Rf) vs. 2 for the ellipses shown in G. Note that 397 

the display screens in D and G were rescaled to show all the pebbles after deformation. 398 

Rfmax and Rfmin in E and H are the maximum and minimum axial ratios used to find the 399 

values of the strain ellipse, Rs, and maximum initial axial ratio, Rimax, in Eqs. (1) through 400 

(4).  401 

 402 

Figure 3. Screen captures of the entire program window and the Cartesian and polar Rf-403 

 plots. A. Photograph (700x700 pixels) of deformed quartz-pebble conglomerate 404 

imported as background image. B. Plot of Rf vs.  of the deformed pebbles in A. C. 405 

Polar plot of ln(Rf) vs. 2 of the deformed pebbles in A. D. Pebble outlines after 9
o
 of 406 

counter-clockwise rigid rotation. E. Plot of Rf vs.  of the pebbles after 9
o
 of counter-407 

clockwise rigid rotation. F. Polar plot of ln(Rf) vs. 2 of the pebbles after 9
o
 of counter-408 

clockwise rigid rotation. G. Pebble outlines after horizontal shortening by pure shear such 409 

that the axial ratio of the inverse strain ellipse is equal to 3.7. Note that the display screen 410 

in G was rescaled to show all the pebbles after deformation. H. Plot of Rf vs.  of the 411 



pebbles after horizontal shortening by pure shear such that the axial ratio of the inverse 412 

strain ellipse is equal to 3.7. The inverse strain value was determined by trial and error to 413 

create the most dispersed distribution of points over the entire range of  values to 414 

simulate an initially random distribution of long axis orientations. I. Polar plot of ln(Rf) 415 

vs. 2 of the pebbles after horizontal shortening by pure shear such that the axial ratio of 416 

the inverse strain ellipse is equal to 3.7. The inverse strain value was determined by trial 417 

and error to create a radial distribution of points centered at the origin to simulate an 418 

initially random distribution of long axis orientations.  419 

 420 
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Table 1. Abbreviations used in text and figures.

 The angle between an arbitrary reference line and the long axis of an ellipse. Range: -90o to 90o.
Rf The final axial ratio (long axis/short axis) of any arbitrary elliptical object. 
Rfmax The maximum final axial ratio of all the elliptical objects.
Rfmin The minimum final axial ratio of all the elliptical objects.
Ri The initial axial ratio of any arbitrary elliptical object.
Rimax The maximum initial axial ratio of all the elliptical objects.
Rs The axial ratio of the strain ellipse (long axis/short axis).

Table



Table 2. Abbreviated explanation of GeoShear command buttons to illustrate available 

functions. 

 
Command Function 

 

Load Ellipse File Loads an existing ellipse data file that contains shape, orientation position, and 

color information. 

Help Brings up the help window. 

About Displays information about this program. 

Display Editor Allows you to draw elliptical objects with the mouse, load a background image, 

and trace ellipses from a background image. 

Load Background Loads an image background for tracing elliptical objects. 

Pebble Color Double-click on the box to change the color. Change the color of all selected 

pebbles by ALT-clicking on the color box. 

Pebble Axes Toggles between showing and hiding long and short axes of elliptical objects. 

Fill Pebbles Toggles between filled and outlined pebbles. 

Background Toggles between showing and hiding the loaded background. 

Zoom Change the magnification of the cross section from 20% to 500%. 

Reset Removes all deformation, positioning, and magnification changes. 

Re-Center Display Re-centers the display but preserves deformation. The display may be moved off 

center by holding down the ALT key and dragging in the display area. 

Un-Zoom Returns display to the default magnification of 100%. 

Simple shear Constrains deformation to be by simple shear. Click and drag in the display to 

deform elliptical objects. You can also type in exact values for simple shear in the 

horizontal and/or vertical directions in the rectangles below the radio button. 

Pure shear Constrains deformation to be by pure shear. Click and drag in the display to deform 

elliptical objects. You can also type in exact values for extension in the horizontal 

and vertical directions in the rectangles below the radio button. 

Area Not 

Preserved (click to 

change) 

Toggles between three options. The first allows area to change during pure shear. 

Area Preserved, Y Ind. Var. lets you specify the vertical extension and adjusts 

horizontal extension to preserve area. Area Preserved, X Ind. Var. lets you 

specify the horizontal extension and adjusts vertical extension to preserve area. 

Lock in current 

deformation 

Used when switching from simple shear, pure shear, or rotation, to another 

deformation mode. Resets frame of reference. 

Rotate Constrains deformation to be by rotation. Click and drag in the display to rotate 

objects. You can also type in exact rotation angles as either degree or radians. 

Big Cartesian Plot A larger Cartesian Rf vs.  plot opens up in a new, re-sizeable window if this 

button is pressed.  

Big Polar Plot A polar plot of ln(Rf) vs. 2( ) opens up in a new, re-sizeable window if this button 

is pressed. 

Save to ges. Save the starting display to a file. The file retains the background and all the 

elliptical objects, but not subsequent deformation or other display changes. 

Save Deformed Save a deformed display, but not the original shapes. 

Export to tab. Saves the undeformed pebble information to a tab-delimited file.  

Export Deformed Saves the deformed pebble information to a tab-delimited file. 

Camera Take a snapshot of the current display. It will capture whatever is in the display 

area as a PNG, BMP, or JPG image. 

Exit Exits the program without saving anything. 

Strain Ellipse Info This area displays information about the strain ellipse (the grey circle in the center 

that you can see when no background is displayed). 
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