A New Precise Measurement of the Stark Shift in the $6P_{1/2}$ -> $7S_{1/2}$ 378 nm Transition in Thallium

Apker Award Finalist Talk September 4, 2002 S. Charles Doret

Earlier work by Andrew Speck Williams '00, Paul Friedberg '01, D.S. Richardson, PhD

Our Measurement: _{Stark} = 103.23(39) kHz/(kV/cm)²

Key Contributions

- Worked on vacuum and laser frequency stabilization systems
- Rebuilt entire optical system for improved laser power and greater stability
- Planned and implemented two data collection schemes, including software
- Built chopping system for improved signal-to-noise and reduced statistical error, including mechanical components, electronics, and software
- Collected and analyzed all data, including an exhaustive search for potential remaining systematic effects
- Co-authored formal paper:

Measurement of the Stark shift within the $6P_{1/2} \rightarrow 7S_{1/2} 378$ -nm transition in atomic thallium, Doret et al. (To appear in Phys. Rev. A)

Motivation –

Tests of Standard Electroweak Model with Atoms - Atomic Parity Non-conservation measurements give both evidence for and tests of fundamental physics

- Of interest here: Q_w , predicted by elementary particle theory According to Atomic Physics:

$E_{PNC} = Q_w * C(Z)$				
Crown Flomont Exportmental Atomic Theory				
Group	Liement	Precision	Precision	
Oxford '91	Bismuth	2%	8%	
UW '93	Lead	1.2%	8%	
UW '95	Thallium	1.2%	2.5% (new, 2001)	
Colorado '97	Cesium	0.35%	~ 1% (or less)	

- Precision matters:

 $\begin{cases} > 5\% - \text{not so interesting} \\ < 1\% - \text{very important} \end{cases}$

- Independent tests of atomic theory – separate from PNC measurements

- Improve on existing limits beyond the Standard Model

How to measure?

Atomic Beam and Optical System Layout

Locking System:

Frequency Tuning:

- Adjust $0 < \langle 1 \rangle \sim 800$ MHz range

- requires precise calibration of free spectral range; tuning is SLOW, manual

Atomic Beam and Optical System Layout

Doubling Cavity

Data Collection/Signal Processing

Chopping System:

- Laser Beam chopping rejects any noise with frequency components other than the modulation frequency – 1400 Hz

- Atomic Beam chopping to correct for optical table drifts, beam density fluctuations, etc. - 1Hz

Division/Subtraction Schemes:

- Extra PMT for laser beam intensity normalization
- Interested in difference signals A-B: Atoms off on on off off on on off E-field off on on off off on on off

- Collect data in ABBA format to minimize the effects of linear drifts

Transmission Profile

T() = exp[- V(,;)], V a normalized Voigt profile

(same for all 6 peaks in transition)

Transmission Change:

- (1) Lock laser to inflection point of transmission curve (dip), measure S = T/N (E = 0)
- (2) Turn on Electric field (E = E₀)
 Shift AOM frequency
 - by appropriate amount (f);
 - Determine S' and S = S' S
- (3) Repeat sequence with altered Electric field values, <u>but same</u> <u>f</u>.

(4) Find y-intercept of linear fit -value of **E**² which exactly matches **f**

Statistical Analysis

Final Statistical Error: 0.20 kHz/(kV/cm)² (0.19%)

Systematic Error Analysis **Doppler Shifts:** Laser Collimators f = f v/c $= 4*10^{14}(300 \text{ m/s} / 3*10^8 \text{ m/s}) * 10^{-3} \text{ rad}$ = 0.4 MHz (0.38%) 0.5 mm aperture AOM111MH Collimator 70 4*10¹⁴(300 m/s / 3*10⁸ m/s) * 10⁻⁴ rad Intensity (arb. units) 6 0 **5** Q 40 kHz (0.04 %) 40 30 2 Û 10 20 30 40 50 Horizontal Position (*10^-5 m) 60 70 10

Correlation Plots

- Concerns about linear fit used to extract $\mathbf{k}_{\text{Stark}}$ with Transmission Change method

- Symmetric data collection on both sides since opposite effect

Transmission Change Analysis	Stark (kHz/(kV/cm) ²)	
Final mean value	103.39	
Statistical Error	0.20	
Systematic Error Sources:		
Curve linearity	0.30	
Oven Temperature	0.26	
Residual Doppler Shift	0.16	
E ² Step size	0.04	
E-field calibration	0.01	
Hi/Lo side lock	0.01	
Quadrature Sum	0.43	

" "Frequency Scan:

- Sequentially lock the diode laser, calibrate " "
- Scan over single line of ²⁰⁵Tl. Fit data to Voigt transmission profile

Some Scan Errors

Fitting Errors:

Conclusions

- Factor of 15 improvement over previous measurement
- $[_{o}(7S_{1/2}) _{o}(6P_{1/2})] = 122.96(47) \times 10^{-24} \text{ cm}^{3}$