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Summary of Tl Stark Shift Measurements

Our Measurement: ∆νStark = 103.23(39) kHz/(kV/cm)2

WStark = - _ αoE2   ;   ∆νStark= -1/2h [αo(7S1/2) - αo(6P1/2)] E2

(αo is scalar polarizability; α2 = 0 for J= _ -> J= _)

[Fow70]

[DeM94]
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- Worked on vacuum and laser frequency stabilization systems

- Rebuilt entire optical system for improved laser power and greater
stability

- Planned and implemented two data collection schemes, including software

- Built chopping system for improved signal-to-noise and reduced statistical
error, including mechanical components, electronics, and software

- Collected and analyzed all data, including an exhaustive search for
potential remaining systematic effects

- Co-authored formal paper:

Measurement of the Stark shift within the 6P1/2 -> 7S1/2 378-nm
transition in atomic thallium, Doret et al.  (To appear in Phys. Rev. A)

Key Contributions



Motivation –
Tests of Standard Electroweak Model with Atoms

- Atomic Parity Non-conservation measurements give both evidence
for and tests of fundamental physics

- Of interest here: Qw , predicted by elementary particle theory

According to Atomic Physics:

EPNC = Qw * C(Z)
Group Element Experimental 

Precision 
Atomic Theory 

Precision 
Oxford '91 Bismuth 2%  8% 

UW  '93 Lead 1.2%  8% 
UW   '95 Thallium 1.2%   2.5%  (new, 2001) 

Colorado '97 Cesium 0.35%  ~ 1% (or less) 
 

 

- Precision matters: { > 5% - not so interesting
< 1% - very important

- Independent tests of atomic theory – separate from PNC
measurements

- Improve on existing limits beyond the Standard Model



How to measure?

2nd order Perturbation Theory:

∆νStark ∝ E2

-Proportionality constant based on
an infinite sum of E1 matrix
elements, similar to C(Z)
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Locking System:

ρ = b/a

Cavity length

Frequency Stabilization:

Frequency Tuning:

- Adjust 0 < ρ < 1   ~ 800 MHz range

- requires precise calibration of free spectral range; tuning is SLOW, manual

n λHeNe / 4 (n+1) λHeNe / 4m λdiode / 4

0 < ρ < 1

0 < ν < 838.2 MHz
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Optical Table

Interaction Region

Doubling Cavity



30 cm

stepper
motor

block/unblock
atoms @ 1 Hz

Top View:
(vTrans ~ vLong / 16)

plate sep: 1.0002(2) cm

voltage divider
(10-4 precision)

± 30 kV

750 C
10-7 torr

Atomic Beamline



Data Collection/Signal Processing

Chopping System:

- Laser Beam chopping rejects any noise with frequency
components other than the modulation frequency – 1400 Hz

- Atomic Beam chopping to correct for optical table drifts,
beam density fluctuations, etc. – 1Hz

Division/Subtraction Schemes:

- Extra PMT for laser beam intensity normalization

- Interested in difference signals A-B:

- Collect data in ABBA format to minimize the effects of linear
drifts

offAtoms

E-field

on on ononoff off off

off on
A B



T(ν) = exp[-βV(γ,Γ;ν)], V a normalized Voigt profile

(same for all 6 peaks in transition)

γ = 20 MHz

Γ = 100 MHz

β = 0.5

Transmission Profile
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(1) Lock laser to inflection point
       of transmission curve (dip),
       measure S = T/N    (E = 0)

(3) Repeat sequence with altered
   Electric field values, but same ∆f.

(2) - Turn on Electric field (E = E0)
      - Shift AOM frequency
           by appropriate amount   (∆f);
      - Determine S’ and ∆S = S’ - S

∆f fixed

(4) Find y-intercept of linear fit -- 
 value of E2 which exactly matches ∆f

Transmission Change:



Statistical Analysis

Final Statistical Error: 0.20 kHz/(kV/cm)2  (0.19%)

Std. Error



Systematic Error Analysis

Doppler Shifts:

δf =  f∗ v/c

  = 4*1014(300 m/s / 3*108 m/s) * 10-3 rad

     = 0.4 MHz  (0.38%)

4*1014(300 m/s / 3*108 m/s) * 10-4 rad

40 kHz   (0.04 %)

≤

≤



Correlation Plots

- Concerns about linear fit used to extract kStark with Transmission
Change method

Simulation: Measured:

- Symmetric data collection on both sides since opposite effect

inf. pt.wings peak



∆νStark

(kHz/(kV/cm)2)
Transmission Change

Analysis

103.39Final mean value

Systematic Error Sources:

0.20Statistical Error

0.43Quadrature Sum

0.01E-field calibration

0.16Residual Doppler Shift

0.30Curve linearity

0.01Hi/Lo side lock

0.04E2 Step size

0.26Oven Temperature



-  Sequentially lock the diode laser, calibrate “ρ”
-  Scan over single line of 205Tl.  Fit data to Voigt transmission profile

∆νStark 2)/25(

63

cmkV

MHz=

= 101kHz/(kV/cm)2

“ρ” Frequency Scan:



Some ρ Scan Errors
Fitting Errors:

Statistics:
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Conclusions
Frequency Scan: -103.02(62) kHz/(kV/cm)2            Transmission Change: -103.39(43) kHz/(kV/cm)2

Combined Value: 103.23(39) kHz/(kV/cm)2

Theory %
Error

- Factor of 15 improvement over previous measurement

- [αo(7S1/2) - αo(6P1/2)] = 122.96(47) x 10-24 cm3

[Fow70]

[DeM94]
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