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 High-precision atomic structure measurements:
Thallium - test ab initio theory calculations

essential for PNC-based electroweak tests
techniques generally useful for diode laser 

spectroscopy of weak atomic transitions

Example: 0.5% Atomic beam measurement of the Stark Shift 
in the thallium 6P1/2 - 7S1/2 378 nm transition 
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Thallium (203, 205)

“Polarizability”:
α7S1/2 - α6P1/2 = 830(3) a0

3

[Doret et al., PRA 66, 52504 (2002)]

New ab initio Tl wavefunctions
[Safronova, et al. 2006]
α7S1/2 - α6P1/2 = 830 a0

3  !!
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Vapor cell spectroscopy @ 900 oC

Atomic beam apparatus affords clean, controlled,
spectrally-resolved laser/atom interaction
(at expense of much-reduced density -- OD ~ 10-5)

1283 nm / M1
378 nm

7S1/2
6P3/2

6P1/2

1283 nm
ECDL

Huge number density
      by heating cell, but….

• Can’t apply E-field

• Unresolved structure
 (Doppler broadening)0
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“Ring-Cavity / Differential Phase Shift Technique”

•    Lock cavity - high sensitivity to small optical
phase shifts

due to high finesse

•    Separate CW, CCW beam detection allows
      differential measurement, common-mode
noise rejection

CCW

CW

Atoms

High reflector w/PZT control

input coupler output coupler

Inside atomic beam unit



Atom-induced Index of Refraction -

n(ν) ~  Σ |<f|V|I>|2  /  [ (ν−ν0) + iΓ/4π ]

• Atoms cause both absorption and optical phase shifts

• Real, imaginary parts of ‘n(ν)’ related in well-known way

• Experimentally scaled by measured ‘optical depth’

Realistic Atomic Beam spectrum for 1283 nm (F=1 ➜ F’=1,2):

A(ν) looks like:  φ(ν) looks like: 

  



The first-generation 3-mirror ring cavityThe first-generation 3-mirror ring cavity

• Finesse ~ 70

• FSR = 440 MHz

• Introduce relative freq. shift via
double-passed AOM @ 220 MHz

• Cavity doesn’t care about
frequency shift,

BUT ATOMS DO …

CW Beam

CCW Beam

Transmission Scans of Dual-Directional Ring Cavity

This beam shifted by exactly one F.S.R.
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• LOCK one cavity signal to
inflection point of F-P fringe

• Tune AOM, adjust
differential amplifier to
subtract optimally here

• Independently, lock laser to
this ‘forbidden’ transition….
[See poster, recent pub. ⇐]

CW signal

CCW signal

Difference x 200

Dual directional ring cavity transmission
Cavity locked to CCW transmission signal

~ 0.1 sec



Explore differential phase shift resolution using AOM

20 kHz step to AOM-shifted beam ∨  Δφ ≈ 3 x 10-4 rad
Study differential cavity transmission signal

Differential phase resolution limit:
     φnoise ≈ 5 x 10-6 rad/√Hz

[Lock to both sides of FP
    fringe to insure true
    phase shift vs. amplitude
    change]

Differential transmission signal
20 kHz step applied to CCW beam

100 Hz low-pass output filter
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0.1 sec

∼ 0.3% of full fringe height



TCCW δ ,v( ) = (1− r)2

1− r 1− A(v)( )2
∗

I0

1+ 4r 1− A(v)

1− r 1− A(v)( )2
Sin[δ + φ(v)]2

TCW δ ,v + FSR( ) = (1− r)2

1− r 1− A(v + FSR)( )2
∗

I0

1+ 4r 1− A(v + FSR)

1− r 1− A(v + FSR)( )2
Sin[δ + φ(v + FSR)]2

• Mathematica…simulation generates Airy functions
• Includes atoms as additional (known) frequency-dependent

complex ‘cavity element’

A(ν) looks like:  φ(ν) looks like: 

  



 

Differential Transmission:
Predicts ~2% fractional
change in peak height
for ODM1 = 1 x 10-4



•  Have constructed, tested an in-vacuum ring cavity for 
differential phase shift spectroscopy

•  Predicted lineshape is complicated (good),
and has “built-in” frequency calibration via AOM shift

•  Given resolution demonstrated, simulation predicts
          that we can detect absorption down to 1 part in 105

•  Expected Stark shift @40 KV/cm more than
          full linewidth in atomic beam (~ 50 MHz)

•  Resolution sufficient for sensitive new Time-reversal
(T-odd, P-even) symmetry test using same system
• same frequency for both counterpropagating laser beams
• introduce E-field parallel to laser propagation direction

Summarizing…



 Remove relative 
frequency shift

 Install E-field plates to
provide co-linear field

Straightforward re-design for T-Violation experiment:

Continue to detect differential
phase shift for interaction of 
counter-propagating beams
with atoms in reversable reversable E-fieldE-field
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New interaction region (2005)

Atomic beam source

New chamber with
ring cavity inside



Faraday Rotation Scan 

B = 3 G, T ~ 700
o
C 

 20 sec scan

Frequency

500 MHz

5 milliradians

Lock near here

0

Rev. Sci. Instrum.
(Sept. ‘05)

Lock diode laser near
‘forbidden’ M1/E2 transition

Use new low-field magneto-optical
technique (Faraday rotation)

Sub-MHz residual noise
within ~300 Hz bandwidth

To limit overall drift and improve stability


