♦
Math 313: Spring 2017: Number Theory Lectures:
-
Lecture 01: 2/3/17:
Introduction, Euclid's proof of infinitude of primes, power sums:
https://youtu.be/-swSmjLqlfE
-
Lecture 02: 2/6/17:
Algorithms, notation, Babylonian math, Gregory-Leibniz formula:
https://youtu.be/4ku0APonNxc
-
Lecture
03: 2/8/17: Coding Lecture:
-
Lecture 04: 2/10/17:
Axioms, Division and Euclidean Algorithms:
https://youtu.be/BZwacoCYU4Y
-
Lecture 05: 2/13/17:
Divisibility tests, clock arithmetic, unique factorization of primes,
Riemann zeta function:
https://youtu.be/Qmz9BAk8SrM
-
Lecture 06: 2/15/17:
Clock Arithmetic, Binomial Coefficients, Morley's theorem, Fermat's little
Theorem: https://youtu.be/46m_kBnrzeo
-
Lecture 07: 2/20/17:
Euler's generalization of FlT, Solving polynomial equations, Chinese
Remainder Theorem: https://youtu.be/WxpNtlsYbzM
-
Lecture 08: 2/22/17:
Solving the 2x2x2 Rubik's Cube:
https://youtu.be/AteP1iFbVmo
-
Lecture 09: 2/24/17:
Dirichlet's Theorem for Primes in Arithmetic Progression, Number Theory
Motivation:
https://youtu.be/zG185Ef1gPM
-
Lecture 10: 2/27/17:
Legendre Symbols, Elliptic Curve Motivation, Law of Quadratic Reciprocity,
Euler's Criterion:
https://youtu.be/cBxqW2OkpWM
-
Lecture 11: 3/1/17:
Introduction to Cryptography, Caesar Cipher, Affine Cipher, Permutation
Cipher, Vigenere Cipher, Midway:
https://youtu.be/0kKow_0HHHQ
-
Lecture 12: 3/3/17:
Diffie-Hellman, UPC codes, RSA, Euler Totient:
https://youtu.be/LW3R1V7GTtM
-
Lecture 13: 3/8/17:
Mobius function, Mobius Inversion, Dirichlet Convolution, Totient Function:
https://youtu.be/dvGxcVfyUdY
-
Lecture 14: 3/10/17:
Euler Totient Function:
https://youtu.be/tFnemsbV5xw
-
Lecture 15: 3/13/17:
Gregory-Leibniz Formula, Average Order, Prime Number Theorem:
https://youtu.be/EMmZvRLlDl8
-
Lecture 16: 3/15/17: Perfect Numbers, Mersenne Primes, Fermat Primes:
https://youtu.be/5CtFP-5dxyU
-
Lecture 17: 3/17/17: Introduction to Generating Functions: Fibonaccis and
Cookie Problem:
https://youtu.be/lJIwL2tsCXE
-
Lecture 18: 4/3/17: Irrationality I: Sqrt(2), Dirichlet's Theorem,
Pigeonhole Principle:
https://youtu.be/JJJSNHhtMSg
-
Lecture 19: 4/5/17:
Liouville's Theorem:
https://youtu.be/h4IJNV_mjEA
-
Lecture 20: 4/7/17:
Transcendental Numbers and Continued Fractions:
https://youtu.be/kPDSyW6CL9Q
-
Lecture 21: 4/10/17:
Computing Continued Fraction Expansions:
https://youtu.be/eKFrbmIOlq8
-
Lecture 22: 4/12/17:
Introduction to Diophantine Equations, the Pythagorean Theorem and
Pythagorean Triples:
https://youtu.be/GW3zoVUZ4Xs
-
Lecture 23: 4/14/17: Method of Descent for Fermat and Introduction to p-adics:
https://youtu.be/DIwYrmIxQpg
-
Lecture 24: 4/17/17: Sniffing out eqns, Series Expansions for DiffEQs,
Pascal's Triangle, Steganography, Solving mod prime powers
https://youtu.be/eRuKhHYJpTg
-
https://www.youtube.com/watch?v=tt4_4YajqRM (my movie constructing table
mod 2)
-
https://www.youtube.com/watch?v=QBTiqiIiRpQ (mod different primes)
-
Lecture 25: 4/19/17: Hensel's lemma:
https://youtu.be/zlsAbRTxmWQ
-
Lecture 26: 4/26/17:
3x+1 Problem:
https://youtu.be/RcHmAbtfL7g
(mathematica
code and
pdf)
(unfortunately video did not project, have to look at code)
-
Lecture 27: 4/28/17:
Coding and Conjecturing for 3x+1:
https://youtu.be/nwEdbWXc8AQ
-
Lecture 28: 5/1/17:
Introduction to Elliptic Curves, Roots of Polynomials, Discriminants:
https://youtu.be/KerQfFu4WEY
(code and
pdf of code)
-
Lecture 29: 5/3/17:
Discriminants, Elliptic Curve, Points at Infinity:
https://youtu.be/MPDxH0Qor4M
-
Lecture 30: 5/5/17: Elliptic Curve Group Law and the Congruent Number
Problem:
https://youtu.be/RqJfLqyWMFM
-
Lecture 31: 5/8/17:
Elliptic Curve Cryptography and Integer Points: https://youtu.be/M-bRTl4H_KQ
-
Lecture 32: 5/10/17: Polynomial Fermat's Last Theorem:
https://youtu.be/2jzReEvf7eA
-
Lecture 33: 5/12/17: Dr Seuss' Circle Method:
https://youtu.be/vDxCIkCg2ik
♦
Interesting news articles involving math (see also the
course disclaimer about not suing me!)
♦
Interesting videos
♦
Course disclaimer
- I may occasionally say things such as
`Probability is one of the most useful courses you can take' or 'If you know
probability, stats and a programming language then you'll always be able to
find employment'. I really should write `you should always be able to find
employment', as nothing is certain. Thus, please consider yourself warned
and while you may savor the thought of suing me and/or Williams College, be
advised against this! I'm saying this because of the recent lawsuit of a
graduate who was upset that she didn't have a job, and sued her school!