GERMAIN PRIMES

A Germain prime is a prime p such that p and 2p+1 are prime. Hardy-Littlewood conjectured the number of Germain

primes p < x equals a constant times x / Ln^2(x), plus lower order terms. Brad Weir investigated the above, as well

as comparing the distribution of spacings between Germain primes to a Poisson process.

PAPERS: germain.dvi   germain.pdf   germain.ps   germain.tex  refs.bib.txt  

FIGURES: 1.ps  2.ps  3.ps  4.ps  5.ps  hle.ps   hln.ps  conv.ps

PROGRAM: germain.c       

HANDOUTS: Poissonian Behavior        Circle Method