CLASS VIDEOS: 2023 (for captioning you might try http://ncamftp.wgbh.org/cadet/ )
Lecture 01: 9/08/23: Introduction, Definition of Derivative: https://youtu.be/sljeScdiiR0 first day slides and notes from class
Lecture 02: 9/11/23: Definition of Derivatives, Experimental Math, Cauchy-Riemann Eqs: https://youtu.be/xYFwqGrs9mQ and notes from class
Lecture 03: 9/13/23: No class, do exam: Real Analysis Review (limsup/liminf, strange functions): https://youtu.be/DLyzZhJN58w (slides); watched at home: Differentiating Term By Term, Analytic Functions, Path Integrals: https://youtu.be/e60Dh8cAIhQ (2017). Green's Theorem in a day: https://youtu.be/Iq-Og1GAtOQ
Lecture 04: 9/15/23: Primitives, Goursat's Theorem: https://youtu.be/-hqBpme4Q2A
Lecture 05: 9/18/23: Primitives, Cauchy's Theorem: https://youtu.be/pTyXgBAGN7A
Lecture 06: 9/20/23: Cauchy's Theorem and Consequences: https://youtu.be/srLW0uLwVpk
Example of a contour integral: https://youtu.be/NgHIiZUYI6g?t=2655 (44:15) (Lecture 06: 9/20/17)
Lecture 07: 9/22/23: Evaluating Integrals: Cauchy Distribution, sin x / x: https://youtu.be/UVvYwP7_5Ww
Lecture 08: 9/25/23: Make sure you are comfortable with sequences and series.
Lecture 09: 9/27/23: Make sure you are comfortable with sequences and series.
Lecture 10: 9/29/23: Make sure you are comfortable with sequences and series.
Lectures from Math 150: Multivariable Calculus: Sequences and Series
Read multivariable calculus (Cain and Herod) and my lecture notes.
Read Intermediate and Mean Value Theorems and Taylor Series (you should know this material already; the main results are stated and
mostly proved, subject to some technical results from analysis which we need to rigorously prove the IVT).
Lecture 11: 10/01/23: Holomorphic is Analytic, Accumulation Theorem, Liouville's Theorem, Fundamental Theorem of Algebra: https://youtu.be/3pgsv4hVrPs
Lecture 13: 10/06/23: (lecture from 10/4/21): Meromorphic Functions, Log, Argument Principle, Rouche, Fund Thm Alg, Trig Integral: https://youtu.be/INRdLUT6ckQ (slides from 2021)
Lecture 16: 10/13/23: No Class - Mountain Day
Lecture 17: 10/16/23:
Watch the following videos before class / read the book (better both!):
Another approach to proving open mapping theorem without using Rouche: watch from 28 minutes till end: https://youtu.be/-vuwc6irob4?t=1685
Complex Logarithms, Earlier Material, Functions with Prescribed Zeros/Values: https://youtu.be/CR-sRChcID4 (slides)
Writing functions as a product over zeros: https://youtu.be/AoiyKD17aKM
Mathematica notebook on plotting zeros: https://web.williams.edu/Mathematics/sjmiller/public_html/383Fa23/mathematicaprograms/PlotZerosExpApprox.nb
Watch the following videos before class / read the book (better both!):
Lecture 19: 10/20/23: No Class - Take-home Exam Lecture 24: 11/01/23: Stirling's Formula, Estimating Sums:
https://youtu.be/0XjpgP9F5uw Lecture 25: 11/03/23: No Class Lecture 26: 11/06/23: Analytic Continuation of Zeta(s):
https://youtu.be/mio4O-DpD2U Lecture 27: 11/08/23:
Class on Wednesday will be asynchronous. Please watch the following two videos
(we may have covered a good amount of the first in class on Monday)
2021: Lecture 24: 11/12/21: Gregory-Leibniz Formula, Dirichlet L-functions,
proof of RH (not!), Duality: https://youtu.be/K8RhtDyts7s (slides)
2021: Lecture 25: 11/15/21: Introduction to Fourier Analysis, Approximations
to the Identity: https://youtu.be/YiFtCBbYe_I (slides)
Lecture 28: 11/10/23:
Complex Analysis and Number Theory I:
https://youtu.be/gfFtYYb4xPQ
Lecture 29: 11/13/23: Number Theory and Complex, Introduction to Fourier Analysis: https://youtu.be/8TIW3bFr6XE
Lecture 30: 11/15/23: Fourier Analysis: Convergence of Series: https://youtu.be/sGUVKUYhEY0
Lecture 31: 11/17/23: Fourier Analysis: Poisson Summation, Probability: https://youtu.be/d4QZPmR_LXA
Lecture 32: 11/20/23: Fourier Analysis IV: Probability, Laplace Transforms: https://youtu.be/fwDbGhG1fRw
Monday: From Complex Analysis to the CLT: 1-2pm in Wachenheim 114 (I will record): https://youtu.be/YwDJh6V8C3Y
Lecture 33: 11/27/23: Stirling I: Analysis arguments, Probability proof: https://youtu.be/65b0Jh1DIns
Lecture 34: 11/29/23: Stationary Phase II: https://youtu.be/NCalCkFs2a0
Lecture 35: 12/01/23: no class:
Lecture 36: 12/04/23: Uncertainty Principle: https://youtu.be/D8onKzVK9G4
Lecture 37: 12/06/23:
Eigenvalues:
https://youtu.be/47xCLUs12lk See for a longer introduction (or happy to meet and chat): Lecture 31: 12/03/21: Eigenvalues and Random Matrix Theory: Part
I: https://youtu.be/On9hT2ZFpdw (slides) Lecture 32: 12/06/21: Random Matrix Theory to L-Functions: Part
II: https://youtu.be/FoKKIMs9wV8 (slides)
Lecture 38: 12/08/23: Several Complex Variables: https://youtu.be/tvKfVNy72SY
CLASS VIDEOS: 2021 (for captioning you might try http://ncamftp.wgbh.org/cadet/ )
Lecture 01: 9/10/21: Introduction, Definition of Derivative: https://youtu.be/8mrJvqbCqB8 first day slides and notes from class
Lecture 02: 9/13/21: Cauchy-Riemann Equations, Green's Theorem: https://youtu.be/IRcxF34gSPU (slides)
Lecture 03: 9/15/21: Real Analysis Review (limsup/liminf, strange functions): https://youtu.be/DLyzZhJN58w (slides); watched at home: Differentiating Term By Term, Analytic Functions, Path Integrals: https://youtu.be/e60Dh8cAIhQ (2017)
Lecture 04: 9/17/21: Primitives, Goursat's Theorem: https://youtu.be/6cJjM8PoTzU (slides)
Lecture 06: 9/22/21: Cauchy's Formula, Integration Example, Inverse Functions: https://youtu.be/m2O3nen0u4I (slides)
Example of a contour int
Lecture 07: 9/24/21: Holomorphic is Analytic, Liouville's Theorem, Fundamental Theorem of Algebra, Cauchy Integral: https://youtu.be/girhkgCQpGw (slides)
Lecture 10: 10/04/21:Singularities, Probability Integrals (Moment Generating / Characteristic functions), Trig Integrals: https://youtu.be/9zSVjGpwbBc (slides) (see also the lecture above)
Lecture 11: 10/06/21: Meromorphic Functions, Log, Argument Principle, Rouche, Fund Thm Alg, Trig Integral: https://youtu.be/INRdLUT6ckQ (slides)
Lecture 12: 10/08/21: Rouche, Open Mapping and Maximum Modulus: 10/4/17 lecture: https://youtu.be/-vuwc6irob4 (lighting issues; see also lecture from 2015: https://youtu.be/gQwK2CIEa1M)
Lecture --: 10/11/21: No class: Reading period
Lecture 13: 10/13/21: Complex Logarithms, Earlier Material, Functions with Prescribed Zeros/Values: https://youtu.be/CR-sRChcID4 (slides)
Lecture --: 10/15/21: No class: Take home exam
Lecture 14: 10/18/21: Sick: Lecture 14: 10/11/17: Writing functions as a product over zeros: https://youtu.be/AoiyKD17aKM (Video from 2015: Products with Zeros of Functions: https://youtu.be/QYseyAB_Sx0)
Lecture 15: 10/20/21: Sick: Lecture 15: 10/16/17: Weierstrass Products, Conformal Maps: https://youtu.be/clP3ZO5HpV4 (Video from 2015: Weierstrass Products, Automorphisms, Unit Disk: https://youtu.be/Az78Kof-1OA)
Lecture 16: 10/22/21: Introduction to Conformal Maps: https://youtu.be/kzPm-0X_HW8 (slides)
Lecture 17: 10/25/21: Schwarz Lemma, Automorphisms of the Disk: https://youtu.be/q4eZRrVPGA0 (slides)
Lecture 18: 10/27/21: Montel's Theorem and Results from Analysis: https://youtu.be/YAWP7TXRGJA (fix on error here: https://youtu.be/A2E5fVKyKXw) (slides)
Lecture 19: 10/29/21: Analysis and the Fundamental Theorem of Calculus: https://youtu.be/SxiE0e4pg-M (slides) (also watch Lecture 20: 10/30/17: Riemann Mapping Theorem (Overview): https://youtu.be/FhphhYFxIP0 (slides)
Lecture 20: 11/01/21: Riemann Mapping Theorem (Proof), Differences between Real and Complex: https://youtu.be/yivEV2yhxgA (slides) (Lecture 19: 10/27/17: Riemann Mapping Theorem (Proof) https://youtu.be/x0Yy1Ivn1c4 (2015 Lecture))
Lecture 21: 11/03/21: Finishing Proof of the Riemann Mapping Theorem, Introduction to the Riemann Zeta Function, Partial Summation: https://youtu.be/-TpU7PdIEf0 (slides)
Lecture --: 11/05/21: No class
Lecture 22: 11/08/21: Approximating Solutions, Perturbing Equations: Sums of powers, Stirling's formula: https://youtu.be/gsW8VnoZSjk (slides)
Lecture 23: 11/10/21: Continuation of Zeta(s), Theta Functions: https://youtu.be/2pNLlEy40Ug (slides)
Lecture 24: 11/12/21: Gregory-Leibniz Formula, Dirichlet L-functions, proof of RH (not!), Duality: https://youtu.be/K8RhtDyts7s (slides)
Lecture 25: 11/15/21: Introduction to Fourier Analysis, Approximations to the Identity: https://youtu.be/YiFtCBbYe_I (slides)
Lecture 26: 11/17/21: Fejer's Theorem: https://youtu.be/FLJFBKx_Hmg (slides)
Lecture 27: 11/19/21: Convolutions, Generating Functions, Introduction to the CLT: https://youtu.be/Z7V8fxFHUQc (slides)
Lecture 28: 11/22/21: Fourier Transforms and Differential Equations, Two Fun Problems: https://youtu.be/cXpqwRQIjfk (slides)
Lecture 29: 11/29/21: Laplace's Method, Stirling's Formula: https://youtu.be/1Ll8vw1M7Fs (slides)
Lecture 30: 12/01/21: Laplace's Method Part II, Discrete to Integer: https://youtu.be/_mjl93gXaY8 (slides)
Lecture 31: 12/03/21: Eigenvalues and Random Matrix Theory: Part I: https://youtu.be/On9hT2ZFpdw (slides)
Lecture 32: 12/06/21: Random Matrix Theory to L-Functions: Part II: https://youtu.be/FoKKIMs9wV8 (slides)
Lecture 33: 12/08/21: Dimension, Fractals, Divide and Conquer, Newton's Method: https://youtu.be/c1QOgbi21_c (slides)
Lecture 34: 12/10/21: Uncertainty Principle: https://youtu.be/iUkFrowVRng (slides)
♦ CLASS VIDEOS: 2017 (for captioning you might try http://ncamftp.wgbh.org/cadet/ )
Lecture 15: 10/16/17: Weierstrass Products, Conformal Maps: https://youtu.be/clP3ZO5HpV4 (Video from 2015: Weierstrass Products, Automorphisms, Unit Disk: https://youtu.be/Az78Kof-1OA)
♦ CLASS VIDEOS: 2015
♦ Interesting news articles involving math (see also the course disclaimer about not suing me!)
♦ Interesting videos
♦ Course disclaimer